
101

C H A P T E R 7

What to Put on WAS
vs. Domino

“‘Domino and WebSphere: So Happy Together.’ Both Domino and
WebSphere are thriving because they solve different customer
problems.”

—E-Pro Magazine, June 2001

When looking to combine features of both Domino and WAS (or J2EE) in a single application,
designers and developers often find that some application elements could be supported on either
WAS or Domino. This chapter explores those areas where WAS and Domino offer comparable
function and tries to provide some insight as to which platform may be more appropriate for a
particular set of requirements. Although there are certain cases where there is a clear choice of
where best to place a function, it is our experience that there are also cases where there is no clear
choice in terms of function alone, and other factors such as development skills or familiarity may
be the basis for the final choice. In fact, these other factors, especially development skills, may
override any purely functional benefits.

At a high level, the type of application is an important factor in deciding on which platform
to build. As discussed in earlier chapters, the strengths of Domino lie in collaborative applica-
tions. Domino is good at applications involving user interaction, providing a scalable document
data store, rich content handling, and a robust security model. WebSphere Application Server
(WAS) is ideal for transactional applications, highly leveraging a relational data store, and pro-
viding enterprise-level J2EE application hosting. WebSphere Portal excels at application and data
aggregation, providing a rich framework for Web-based applications.

Lamb_07.qxd 08.19.04 10:52 AM Page 101

Assuming that we have an application that has both collaborative and transactional ele-
ments, let’s review some of the key features of each platform to help understand which parts may
be supported by which platform.

Lotus Domino Server
Lotus Domino is a comprehensive application platform for collaboration that handles both con-
nected and disconnected requirements for data and applications. Many customers initially
purchase Lotus Domino for the built-in enterprise e-mail, calendar, and scheduling applications,
making those types the most-widely deployed collaborative applications. The majority of cus-
tomers, however, exploit the document-sharing and form capabilities that support core business
processes, which enable employees to work together efficiently and securely. Domino is compre-
hensive; it provides the complete infrastructure needed to create, test, deploy and manage distrib-
uted, multilingual applications including directory, database, application server, administration,
security, connectivity, Web server, e-mail server, calendaring engine, and so on—all in one system.

WebSphere Application Server
The WAS is IBM’s core product for J2EE application support. IBM has differentiated WAS from
other J2EE application servers in its scalability. From its inception, WAS was geared toward
large-scale J2EE applications. It provides features supporting highly distributed applications and
their management and support for the latest J2EE and Web services standards. It also addresses
scalability and performance with support for deployment across multiple servers, load-balancing
services, and automated performance tuning. Today, WAS is available in several configurations
across a wide range of platforms, allowing any size of J2EE application to be deployed in the
most cost-effective way possible.

In contrast to Domino, WAS does not contain its own data manager. Instead, it relies on a
relational database being available in the environment for application data storage or for J2EE
components themselves, such as entity EJBs. One way that WAS provides access to those data
sources is by leveraging the J2EE Connector Architecture (JCA). JCA defines a set of service
contracts that a connector developer can expect will be available to the adapter at application run-
time. The three basic services defined in JCA V1.0 include connection management, transaction
management, and security management.

Also unlike Domino is the fact that WAS relies on external sources for user directory (or
what it terms “user registry”) functions. For WAS (and J2EE), the user registry is required for
user authentication relative to providing secure access to application components. WAS can be
configured to use two categories of user registries—local; for example, the Windows Active
Directory or Unix user account file (/etc/passwd), or LDAP; that is, directories supporting the
Lightweight Directory Access Protocol. The fact that Domino can provide LDAP access to its
directory enables it to be considered for the WAS user registry. For single sign-on (SSO) support
between Domino and WAS, and LDAP user registry must be used. We discuss the options for
directory configuration in detail in Chapter 12, “Security and Single Sign-On.”

102 Chapter 7 What to Put on WAS vs. Domino

Lamb_07.qxd 08.19.04 10:52 AM Page 102

Domino Features Enabling Applications to Integrate with J2EE
Domino ships with features that facilitate the integration of Domino data with J2EE applications.
You can reap many benefits by combining Domino and J2EE applications including, most impor-
tantly, the addition of human interaction into scalable and transactional applications built on
J2EE. When integrating Domino with a J2EE-based application, there are two key ways to access
Domino functions:

• Domino Objects for Java

• Domino Custom JSP tags

The Domino Objects for Java are essentially the Domino Java API. These objects allow for Java
object-based access into the Domino data store for the key database functions of create, read
update, and delete—or CRUD actions. The Domino Objects for Java API allows access not only
to Domino data but also to key Domino services, such as registering users, running agents, send-
ing mail, and others. The Domino Objects for Java can be used by experienced Domino develop-
ers for adding Domino specific function to J2EE applications. For example, a servlet or JSP can
be enhanced with Domino function by using the Domino Java Objects within the servlet’s or
JSP’s Java code.

The Domino Custom JSP tags are for use from within a JSP. These tags are XML tags
embedded in a JSP and provide access to Domino data, data validation, and flow control. The
Domino Custom JSP tags are built on the Domino Objects for Java and are intended for use by
experienced JSP and JavaScript developers. These developers can use the Domino tags to build a
J2EE application that uses Domino data and services, without having to become familiar with the
pure Java Domino APIs.

Lotus Domino Toolkit for WebSphere Studio
Starting with Domino 6.0.2, the Lotus Domino Toolkit for WebSphere Studio provides develop-
ers with an intuitive tool to implement the Domino custom JSP tags into their WebSphere appli-
cations. The toolkit is a set of plug-ins that enhances the WebSphere Studio Application
Developer (WSAD) user interface. It enables J2EE developers to integrate Domino functions into
Web applications without the complexity of the Domino Java API or even a detailed understand-
ing of the Domino Custom JSP tags.

The toolkit adds a new view to WSAD, a “Domino view,” which allows you to work easily
with Domino database objects such as forms, fields, views, and agents. Using this new Domino
view within WSAD, you can access a Domino database (locally or remotely) and display the
database’s forms, fields, views, and agents. These objects can be dragged and dropped onto JSPs
being developed, and the equivalent Domino custom JSP tag code is inserted. Using the Lotus
Domino Toolkit enables developers without an in-depth understanding of Domino function to
easily incorporate that function into their applications.

Domino Features Enabling Applications to Integrate with J2EE 103

Lamb_07.qxd 08.19.04 10:52 AM Page 103

XML
Domino has extensive XML capabilities that can be used from a J2EE application. A J2EE appli-
cation can use the Domino Java API to retrieve Domino documents in XML format without
knowing specifics about the data stored in Domino. Then, the J2EE application can process the
XML and transform it to the specific format needed by the application. If the application needs to
update the Domino data, the same interface can be used to update the database by passing back
XML.

Web Services
Emerging Web services standards simplify and broaden application integration by defining a
standardized means to make service requests and receive response data over common Internet
protocols. The lingua franca of Web services is the XML based access protocol known as Simple
Object Access Protocol (SOAP). Designers express the application or service interface using
XML. Domino can host Web services that expose Domino data and function using Java or
LotusScript. Using a combination of a J2EE server such as WAS, appropriate SOAP classes and
the Domino Java Objects, developers can expose desired portions of their current Domino appli-
cations as Web services. To do so requires some Java development skills and knowledge of the
Domino object model, which we discuss in detail in following chapters. For pure J2EE applica-
tions, WAS ships with the needed SOAP classes, and the WebSphere Studio development envi-
ronment has wizards for creating, consuming, managing, and deploying Web services.

Domino Data in a Relational Database
Domino has a capability, via the Lotus Enterprise Integrator (LEI) feature, to store all document
data in a relational database, such as DB2, Sybase, or Oracle, rather than in a Domino NSF data-
base file. The benefit is that Domino maintains its security controls and the database design, but
since the document data is stored in the relational database, document access is improved due to
the performance efficiencies offered by the relational database. This access method is referred to
as Advanced RealTime connectivity. Advanced RealTime connectivity allows significantly better
scalability and performance, since the relational technology is used for data storage versus the
Domino NSF file format.

The Advanced RealTime connectivity feature can be used as a means to integrate Domino
data with J2EE applications. As mentioned previously, J2EE applications running on WAS can
access relational data stores directly using JDBC or EJB interfaces. Instead of using Domino pro-
vided mechanisms to access Domino data stored in NSF files, the application can utilitize rela-
tional data access methods. A designer can achieve high performance by employing standard data
access techniques such as connection pooling, caching, and minimizing JNDI lookups.

J2EE allows for the abstraction of databases and their connections from application code
by accessing a business object layer rather than the database directly. This layer, in turn, accesses
the database itself. The same business objects can be accessed by different applications. The data-
base design is decoupled from the application itself, creating easier maintenance going forward.

104 Chapter 7 What to Put on WAS vs. Domino

Lamb_07.qxd 08.19.04 10:52 AM Page 104

WAS (J2EE) Functions Compared to Domino
In this section, we discuss the main areas where WAS and Domino overlap in function and
present the conventional wisdom (and our view) about using one over the other.

Servlets vs. Web Agents
At a high level, J2EE servlets and Domino Web agents are pretty much equivalent—they provide
a means to run server-side programs triggered by client-side (browser) events. The Domino “Web
agent” function is new with Domino 6 and basically extends the traditional Domino agent func-
tion to include triggering from Web events. The traditional Domino agent was restricted to server-
side programs triggered by time or by Domino database events. Both servlets and Web agents can
return HTML to the client.

Domino Web agents can be coded in either Java or the Domino-specific languages of
LotusScript, formulas, or simple actions. In fact, Web agents are the only context in which
LotusScript may be used for Web applications. Thus, Web agents may be easier to implement for
Domino developers. The Web agent, since it runs as part of the Domino server, has direct access
to Domino data elements. The biggest drawback to using Web agents for server-side functions is
that the agent must be loaded each time it is invoked. This is done by the Domino agent manager,
which does not provide for agent caching. For Web agents written in Java, an entire JVM must be
started to run the agent. If the design calls for frequent use of the agent, loading on each invoca-
tion usually leads to unacceptable performance.

Servlets, on the other hand, are architected to be run efficiently by the J2EE application
server. Servlets are loaded either on server start or on first invocation of the servlet and are simply
passed subsequent requests by the application server. If the servlet function needs to access
Domino resources, this can be accomplished via the Domino Objects for Java. The servlet
designer has a choice of how Domino is accessed, which can be either locally (where Domino is
running on the same server as WAS) or remotely. Naturally, there is overhead in accessing
Domino remotely, but this can be tailored so that the access is not needed for each servlet invoca-
tion. We discuss strategies for accessing Domino via Java and J2EE in more detail in Chapter 10,
“Accessing Domino from J2EE.”

Which to choose then? We usually adhere to the common guideline of implementing
server-side functions as servlets, especially when the functions will be invoked frequently. If the
functions are infrequent and require a fair amount of or sophisticated Domino processing, then
Web agents are appropriate.

Java Server Pages (JSPs) vs. Domino Forms
Another area of overlapping function between WAS and Domino is the ability to generate and
process HTML content, especially forms. A designer can include forms in a Web application by
using either JSPs managed by WAS or Domino database forms served by the Domino HTTP
engine. A third possibility is available now with the support for Domino Custom JSP tags, where
any Domino database form can be converted into a JSP and handled by WAS.

WAS (J2EE) Functions Compared to Domino 105

Lamb_07.qxd 08.19.04 10:52 AM Page 105

The choice between WAS and Domino here is not clear-cut. There are several factors that
could affect the decision. Probably the most influential ones are the following:

• Overall application look and feel. If the application is predominantly JSP- or Domino-
based, then it makes sense to stay with the same rendering. Although if there is any JSP
content, it may be easier to convert Domino Web content to JSPs rather than the other
way around.

• Development skills. If the development experience lies with one product, then it will
likely cost less to develop using that product.

• Unique feature rendering. There are certain cases where attempting to convert a
Domino form to a JSP will not be of perfect fidelity. This can occur when using the
Domino Custom JSP tags. (In Chapter 10, we discuss ways to generate JSPs from
Domino forms with greater fidelity.)

WAS vs. Domino Servlet Engine
Before the advent of WAS, the Domino server product provided a means for plugging in a servlet
engine to handle servlets in addition to the standard Domino resources. So, there is the possibility
of using a servlet engine under Domino versus WAS for servlet processing. The choice here is
clear-cut. WAS should handle all J2EE resources. It’s difficult to concieve of any advantage to
having Domino handle servlets.

Keeping an Eye on the Future of Domino and WAS
For IBM, the future of both WAS and Domino is clearly all about how best to integrate the prod-
uct families in terms of both function and developer communities. Clearly with recent product
versions, this process has started. How may this integration affect application design decisions
that need to be made today? We consider this question in the following section.

Toward Open Standards
A key issue in the Web application server and services marketplace is the choice between the use
of open standards vs. proprietary programming interfaces. Or, to be blunt, J2EE versus .NET. As
is well documented, an open standards foundation is a major part of IBM’s strategy in the mar-
ketplace. WAS, being an implementation of J2EE and now Web services standards, will continue
down the open standards road. Domino, having a longer product history, will continue to incorpo-
rate open standard interfaces.

Although proprietary technology is an important differentiator in the market, even Lotus
has long supported key Internet standards. Domino delivers enterprise messaging while support-
ing an open standards-based application development architecture that includes Java, JavaScript,
XML, HTML, LDAP, SMTP, POP3, IMAP, and SSL. Domino has embraced Java as both an

106 Chapter 7 What to Put on WAS vs. Domino

Lamb_07.qxd 08.19.04 10:52 AM Page 106

external interface, providing Java classes for all its key interfaces, and as an internal language that
can be used in place of Lotus’ BASIC-like programming language, LotusScript. It is natural to
expect that the integration of the WAS and Domino products will occur along these open stan-
dards lines.

Browser-Based Clients
Another sign of the impact that the Web application model is having on Domino are the iNotes
and, more recently, the Lotus Workplace products. Traditionally, Lotus Notes was a client/server
architecture based on the feature rich Notes client and the Domino server. With Domino R5 and
iNotes, browsers became a prominent client. Lotus iNotes for Web Access, despite its browser
dependencies, was an important step along the path to provide Notes client function via the Web
browser. The Lotus Workplace product is the latest step along this path.

Browser-based client function is important for applications that integrate several, often dis-
parate types of function on a single browser screen—the so-called Web portal. For example,
using the WebSphere Portal Server product, you can integrate transaction processing under Web-
Sphere with e-mail, calendar, and other Domino functions. Thus, you can now construct a Web
application that looks and feels like an extension of the iNotes application, resulting in a single,
browser-based desktop from which users can access all the applications that they use on a daily
basis.

It is likely that IBM will continue to provide client function via the browser and enhance
the WAS and Domino functions that can be presented in a portal context.

Convergence of Function
The integration between WAS and Domino also will occur with functions that span both prod-
ucts. Security is the prime example. IBM has implemented single sign-on (SSO) support between
Domino and WebSphere. SSO lets users authenticate once when accessing both Domino data
(databases, documents, fields) and WAS resources, such as HTML, servlets, JSPs, and EJBs. This
is accomplished via sharing an encryption mechanism used for passing user credentials and shar-
ing a common user registry using LDAP.

Another area of common function is data storage. We can see that Domino’s data storage
technology (the NSF database) has already benefitted from synergy with other IBM database
products, especially DB2. Domino R5 provided faster recovery and improved reliability for its
data store using transaction logging. We can expect this sort of synergy to continue, perhaps
resulting in convergence of Domino’s document data store with the relational model.

IBM and Lotus will continue to meld their product families into one. Lotus K-station
(Domino’s portal server) has already been merged into WebSphere’s portal server as a single por-
tal solution with the benefits of both products. IBM’s recent move to allow WebSphere workloads
on its iSeries Dedicated Servers for Domino (DSD) line of servers is a good indication that IBM
understands how important this integration is.

Keeping an Eye on the Future of Domino and WAS 107

Lamb_07.qxd 08.19.04 10:52 AM Page 107

Another notable item is the Domino Collaboration Objects for Java. IBM and Lotus say
their intent is not to extend Domino but to provide a more intuitive interface to Domino objects
with fewer Java methods and classes. The current array of objects includes the following:

• CalendarEntry (to search calendars and create new entries)

• Mail (to compose and send e-mail)

• Login and workflow initiation services

As for Domino’s traditional programming environment, don’t assume IBM will abandon
LotusScript. Lotus Notes and Domino have an enormous customer base of users and developers
using LotusScript-based applications. Continued support for this language is unquestionable. As
new classes and properties are developed for LotusScript, equivalents for Java will follow. Obvi-
ously, the intent is that J2EE (Java) programmers can be trained to work with Domino without
having to learn a new language.

Evolution of WebSphere
So, if the future of Domino is WebSphere, what’s the future of WebSphere? Since WAS is IBM’s
implementation of the J2EE standard, the evolution of J2EE will largely determine what Web-
Sphere becomes.

IBM is committed to building the most complete and best-performing application server
based on the J2EE standard. And because many areas aren’t covered by the standard, IBM can be
creative and add value by supplying add-on features that make WebSphere more enterprise ready.
IBM is also adding application products and proprietary extensions to the base WebSphere prod-
uct to meet needs expressed in the marketplace.

IBM updates WAS every six months or so with a major release. Each version of WebSphere
gets a little easier to install and manage, but the real activity is in the extensions and applications.
Consider the following:

• With WebSphere MQ, IBM implements the Java Messaging Services (JMS) standards.
Numerous connectors to CICS and other legacy systems and middleware are also
planned or shipping.

• IBM has rewritten Net.Commerce into Java to run under WebSphere as the WebSphere
Commerce Suite—a high-powered storefront system.

• IBM has grafted speech recognition technology (as well as its vaunted national lan-
guage support) onto WebSphere.

• IBM has implemented portals, wireless support, and B2B capabilities as Java applica-
tions that run in the WebSphere environment.

• IBM is moving its legacy connectivity products to the WebSphere environment with
offerings such as WebFacing on the iSeries and Host Publisher.

• IBM has leveraged Lotus’ expertise with its ERP Connectors and introduced several
WebSphere adapters that are based on Lotus LEI connector technologies.

108 Chapter 7 What to Put on WAS vs. Domino

Lamb_07.qxd 08.19.04 10:52 AM Page 108

WebSphere is the logical place for IBM to create new applications because they can be leveraged
over the entire eServer line. Expect a steady stream of WebSphere-based products from IBM over
the next few years. Watch areas like content management, system management (Tivoli is already
starting to play in these areas with its Policy Manager), collaboration, and application accelerators.

Tooling for developing WebSphere applications is also advancing rapidly with the new
WebSphere Studio products. Based on the open-source Eclipse project, IBM has replaced Visu-
alAge for Java and the old Studio product and added new support for XML and Web services. For
some of the IBM hardware platforms, such as the iSeries, IBM is adding platform-specific exten-
sions to aid in application development and integration.

A big question is the Lotus Domino Designer client. It’s hard to see how IBM will merge
this with the WebSphere tooling. You may see, however, improved Domino deployment options
for objects developed in the WebSphere Studio tools.

IBM has already repositioned several product lines and placed them under the WebSphere
umbrella. Is Domino next? Will we see a WebSphere Mail and Collaboration Server? Assuming
that there will be a new integrated WebSphere/Domino Server in the future, it will be worthwhile
to keep an eye on WebSphere and J2EE evolution.

A Web Conferencing Example Using Both Domino and WAS
In this section, we discuss the design of a project that provides an “on demand” Web conferenc-
ing service and that incorporates both Domino and WAS product functions. It illustrates various
ways in which Domino and WAS-based products can be combined to build applications provid-
ing complex function without a lot of custom application development.

The basic function of the service is to allow anyone with Internet access to register, sched-
ule, and join browser-based conferences. The conferences include chat, multi-media, and white-
board sharing functions. The Domino-based Lotus Instant Messaging (née Sametime) Room
Server product is used for hosting the Web conferences. To register the Web conferences, the
WAS based WebSphere Everyplace Subscription Manager (WESM) product is used. The Lotus
Enterprise Meeting Server (EMS) product, which is a J2EE application, thus WAS-based, is used
to manage the meetings and perform load balancing for the Sametime room servers. The EMS
keeps track of logging into and exiting meetings for registered users. The Sametime room servers
run on Domino servers, as they don’t require transaction capability. The user registry is provided
by the IBM Directory Server product and is shared across the room, subscription, and meeting
servers. There was also a requirement for an outbound mail function, and this was provided by a
stand-alone SMTP server. The project was designed for 24×7 availabilty, so many of the server
nodes were built as clusters using an IBM clustering product, HACMP.

Figure 7-1 shows the overall architecture of the service and where the different types of
servers are placed in the network tier layout. We point out that due to product requirements, not
all the WAS servers are at the same WAS version. WESM runs on WAS V5, but the EMS product
supports only up to WAS V4. For this reason, the WESM and EMS servers were built on separate
server systems.

A Web Conferencing Example Using Both Domino and WAS 109

Lamb_07.qxd 08.19.04 10:52 AM Page 109

Figure 7-1 Web Conferencing logical server architecture.

Directory Master-Peer Design for High Availability
The directory function of the Web conferencing service had two key requirements—that it be
shared among the functional servers (e.g., for single sign-on) and that it be highly available. The
approach taken was to place the directory server behind a shared load balancer and to make use of
a master-peer replication topology provided by the IBM Directory Server product. Figure 7-2
depicts the directory server configuration.

In the master-peer approach, the directory client will read/write to the master. If the master
server fails, the client requests are directed to the peer server until the master is made active again.

The replication process keeps the data in the master and peer directories synchronized.
Whenever a write (or update) is to be done against the directory, it goes to the master. After the
write/update is complete, it replicates it to peer server immediately. When the master server is
down, the write/update goes to peer server, and it will be queued for replication once the master is
restarted.

110 Chapter 7 What to Put on WAS vs. Domino

Internet

TCP 1533, 8081, 80

Sametime 3.1
Room Server

Sametime 3.1
Room Server

Sametime 3.1
Room Server

Sametime 3.1
Room Server

Sametime 3.1
Room Server

Domino 6.0.2

TCP
80

TCP 80,
900

TCP 80, 443

TCP 80,
900

WAS 4.0.3
(EMS)

(& WESM client for
Audio Bridge)

WAS 4.0.3
(EMS)

(& WESM client for
Audio Bridge)

TCP 80

TCP 636, 389

IP Load Balancer
(Web Layer)

IP Load Balancer
(Web Layer)

TCP 80, 443

TCP 80 TCP 80

SSL Terminator
Accelerator

IHSIHS

IP Load Balancer
(Web Layer)

IP Load Balancer
(Data Layer)

TCP 80

TCP 636, 389TCP 636, 389

TCP 636, 389

TCP 636,
389

TCP 1414

TCP 1414

TCP 443

TCP 443

SMTP TCP 25

MTP TCP 25

TCP 6789,
2000

TCP 6789

SQL

Infrastructure Support

WebSphere MQ
HACMPActive/Active

WebSphere MQ
HACMP Active/Active

LDAP/DB2 Master/
Peer

IBM Directory Server
LDAP/DB2 Master

DB2 Server
(& WESM provisioning, server

and clients)
HACMPActive/Passive

DB2 Server
(& WESM provisioning, server

and clients)
HACMP Active/Passive

WAS 5.0
(WESM)

WAS 5.0
(WESM)

RED

YELLOW

GREEN

Client
Authentication

and User
Interface

Note: WESM or DB2
would connect to an

SPI for the UMI part of
Billing

To
Telecom Audio
Bridge Provider
(in Red Zone)

SSL Certificate
provided by audio

provider

AEP common services
Yellow zone for ACP SMTP Servers)

SendMail
Outbound-SMTP Mail

Relay

Lamb_07.qxd 08.19.04 10:52 AM Page 110

A Web Conferencing Example Using Both Domino and WAS 111

DB2

Room Server
- as LDAP Client

WAS4-EMS
as - LDAP Client

WAS4-EMS
as - LDAP Client

DB2

LDAP Server-Master LDAP Server-Peer

Load Balancer

Figure 7-2 Design for the shared directory.

For directory sharing, the Domino, WESM, and EMS servers are configured to the virtual
IP address of the directory server. As part of their user management functions, the EMS and
WESM applications perform write/update operations to the directory server.

WebSphere MQ Application Details
EMS communicates with the Sametime servers using the Java Message Service (JMS). This JMS
communication is implemented using IBM WebSphere MQ message queuing. The JMS commu-
nication supports load balancing, server independence, and failover necessary to provide central
meeting management for all of the clustered Sametime servers. It also allows centralized logging,
statistics, and configuration change notification.

The Sametime Room servers must be able to communicate to EMS/WAS using TCP/IP
port 900 (WebSphere 4.x JNDI port). The EMS and Sametime Room servers must be able to
communicate to WebSphere MQ using TCP/IP port 1414.

WebSphere MQ Cluster Design
Because the WebSphere MQ (WMQ) server acts as the blood supply of the service, availability is
a key criterion for these servers. It is also important that the design allow for the easy addition of
MQ servers. IBM’s High Availability Cluster Multi-Processing (HACMP) product (for AIX) is a
control application that can link servers into highly available clusters. Clustering servers enables
parallel access to data, which can help provide the redundancy and fault resilience required for
business-critical applications.

Lamb_07.qxd 08.19.04 10:52 AM Page 111

The WMQ clusters reduce administration and provide load balancing of messages across
instances of cluster queues. They also offer higher availability than a single queue manager
because following a failure of a queue manager, messaging applications can still access surviving
instances of a cluster queue. However, WMQ clusters alone will not provide automatic detection
of queue manager failure and automatic triggering of queue manager restart or failover. HACMP
clusters provide these features. The two types of cluster can used together to good effect.

By using WMQ and HACMP together, it is possible to further enhance the availability of
the WMQ queue managers. With a suitably configured HACMP cluster, it is possible for failures
of power supplies, nodes, disks, disk controllers, networks, network adapters, or queue manager
processes to be detected and automatically trigger recovery procedures to bring an disabled
queue manager back on-line as quickly as possible.

An HACMP cluster is a collection of nodes and resources (such as disks and networks),
which cooperate to provide high availability of services running within the cluster. Hopefully,
we’ve been making a clear distinction between such an HACMP cluster and a WMQ cluster,
which refers to a collection of queue managers that can allow access to their queues by other
queue managers in the cluster.

A “mutual takeover” configuration is one in which all nodes are performing highly avail-
able (movable) work. This type of cluster configuration is also referred to as “Active/Active” to
indicate that all nodes are actively processing critical workload. An Active/Active cluster config-
uration is used for the Web conferencing service.

The load balancing is based on client connections and not the message distribution. Each
Sametime room server has a connection to either of the cluster nodes through connection chan-
nel. If the queue exists on the queue manager node to which it is connected, it will always go
there for the duration of the connection. Figure 7-3 depicts the overall cluster design.

112 Chapter 7 What to Put on WAS vs. Domino

Lamb_07.qxd 08.19.04 10:52 AM Page 112

A Web Conferencing Example Using Both Domino and WAS 113

Clustered
Queues

Cluster
Repository

Local
Queue

Clustered
Queues

Local
Queue

Cluster
Repository

Domino Sametime
Room Server EMS Server

Trout Bass

Shared Disk

Client Connection
Channel

HACMP Layout

Serial Connection SVRCON
Cluster Channel

Shared Disk

MQ Client MQ Client

QMGR A
(1414)

QMGR B
(1415)

Figure 7-3 WebSphere MQ HACMP cluster (active-active) design.

Lamb_07.qxd 08.19.04 10:52 AM Page 113

Lamb_07.qxd 08.19.04 10:52 AM Page 114

