Accounting for change, 180, 224, 245
Accounting for rework, 224, 245–246
Activity Based Costing (ABC), 26
Adaptive behavior, emergence of, 109
Agile management theory and roles, 109, 185
Agile Manifesto principle, 12
Agile methods
 agility, defining, 293
 applicability of, 291
 business benefit of, 155–159
 expedite, as ability to, 293–294
 maturity progression, 297
 problem domain versus process map, 291
 process space, division of, 291–293
 scale versus ability to expedite, 294–295
 statistical process control, and, 295–296
 transferable quality improvement, 297–300
Agile software production metrics, 49
Analysis maturity continuum, 280–282
Anticipated ROI, use of, 111
Archetypes, 181
Artisan skills, 298, 299
Attributing value to a release, 152–153
Average Cost per Function (ACPF), 23, 54
Average Investment per Function (AIPF), 75
Average Investment per Function Point (AIPFP), 178
Average Revenue per User per Month (ARPU), 150

Batch size, role of, 88–89, 204
Blocked inventory, 68
Bottleneck
 addition of staff to a, 119–120
 failure at unit test, 82
 in Feature Driven Development, 210
 identification of, 79–81
 at system test, 83–84
Brooks' Law, 38, 274–275
Budget buffers, 209
Budget constraints, 41–42, 209
Capacity constrained resource (CCR), 34, 146
Cash cost per user per month (CCPU), 150
Chaos theory, 10–11, 44, 278, 280
Chief Programmer Work Packages (CPWP), 191–192, 197, 203–204
Classification phase, 7
Code inspections, effect of, 86
Code reuse, 271
Coding process time, 165–166
Collective ownership approach, 239
“Common cause” variation, 43
Complex Adaptive Systems, 11
Conceptual learning, 297–300
Continuous improvement, role of, 113
Control charts, 5, 278
Control states, 277–280
Convergent versus divergent processes, 10
Correlation phase, 7–8
Cost accounting approach, 25–26, 141
Cost benefit of quality, 87
Cost control, 25
Cost efficiency, 25
Cost of change curve, 246–249
Critical chain representations, 70, 196, 208
Critical path, 64–65, 70, 216–217
Cumulative delays, role of, 218
Cumulative flow
 bottleneck, use in identification of, 79–80
 in Extreme Programing (XP), 227
 in Feature Driven Development (FDD), 194
 monitoring, 90–93
 tracking inventory with, 53, 60–61

D
Data management, 184
Defined versus empirical processes, 9–10
Delivery date, protection of, 63, 68
Design by feature set (step 4), 183
Design process time, 165
Developer resource constraint, 202
Development manager, 73–74, 77
Divergent versus convergent processes, 10
Domain Neutral Component (DNC), 181, 211–212, 279, 283
Drum beat, role of the, 95
Drum-Buffer-Rope, 4, 68, 95

E
Early finish, failure to report, 218
Early start, 65, 66
EBITDA equation, 150–151
Edge of Chaos state, 278, 280
Effect-cause-effect phase, 8
Effort-based metrics, 50
Effort tracking, 56–57
Emergence, 11–12
Empirical versus defined processes, 9–10, 277–278
End-to-end traceability, 113
Enterprise Resource Planning (ERP). See Manufacturing Resource Planning (MRP)
Epics, 226
Estimated cost of project delivery (D), 23
Evaporating clouds diagram, 272–273
Expected return on investment, calculation of, 24
Expediting requirements, effect of, 99–101
Exploitation considerations and implications, 30–31, 201
Extreme Programming (XP)
 accounting for charge, in, 245
 accounting for rework, 245–246
 collective ownership approach, 239
 continuous integration, use of, 235
 cost of change curve, 246–249
 cumulative flow diagram, 227
 epics, 226
 expediting, and, 294
 financial metrics, 243–249
 goals of, 225
 integration testing, use of, 235–236
 inventory, 225–226, 243
 inventory cap, 229
 inventory tracking, 227–228
 investment, 229, 243–244
 lead time, 228, 284
 net profit equation in, 244
 on-site customer, role of the, 240
 operating expense in, 244
 option theory, 234
 pair programming, use of, 236–237
 pipelining, 229
 planning game, 234
 prioritization of stories, 234
 process step time, 228
 production metrics, 225–231, 288
 production rate, 227
 quality, focus on, 284
 raw material, 225
 refactoring, use of, 230, 239, 245–246
 regular work week, use of, 240
 return on investment in, 245
 risk philosophy, 229
 S-Curve, 248–249
 senior management, for, 230–231
 specialists, elimination of, 240
 stand-up meeting, use of the, 238
 statistical process control, and, 295–296
 story points, 225
 system representation, 226
 tasks, 226
 test driven development (TDD), 238
 testing, 229
theory of constraints, denial of, 241
throughput, 227, 244
transferable quality improvement, 298–300
unit testing, 238
user stories, assessment of, 233–234

F
Failure
 at integration test, 82, 83, 86
 at product test, 84, 85
 at system test, 87
 on system test, 86
 at unit test, 81–82
 at user acceptance test, 84–85
Failure tolerant organization, role of the, 114
“Fair Process,” 32
Feature definition, 184–185
Feature Driven Development (FDD)
 accounting for change, 224
 accounting for rework, 224
 adaptation mechanisms, 189
 agile management theory, and, 185
 batch size, role of, 204
 bottleneck, test, 210
 budget buffers and constraints, 209
 buffers, role of, 197–198, 207–209, 209, 217–218
 build batches, 191–192
 build by chief programmer work package (Step 5), 183
Chief Programmer Work Packages (CPWP),
 191–192, 197, 203–204
 critical chain representation, 196, 208
 critical path, maintaining the, 216–217
 cumulative delays, role of, 218
 cumulative flow diagram, 194
 data management (DM), 184
 dependencies, role of, 218
 design by feature set (step 4), 183
 developer resource constraint, 202
 domain neutral component, 211–212
 early finish, failure to report, 218
 estimates versus agreed function, 194–195
 executive management metrics, 200
 exploitation of engineering resources, 201
 feature definition, 184–185
 feature lifecycle, 193
 feature list (Step 2), 182
 feature process steps, 196
 feature sets, 191–192
 feature team, use of, 202–203
 file/class access constraint, 202
 financial metrics, 221–224
 five-point scale, 187–188
 formulae, 188–189
 inventory, 212–213, 221, 283–284
 inventory cap, role of, 209
 investment, 221–222
 knowledge management system, use of, 199
 lead time, 185
 level of effort (LOE), estimation of, 186–188
 local safety problem, 219
 modeling and analysis phase, 210–212
 modeling rule of thumb, 186
 morning roll call, use of, 213–215
 multitasking, role of, 218
 operating expense, 186, 222–223
 overview feature, 181–182
 peer reviews, use of, 210
 PERT charts, 195–196
 plan by subject area (Step 3), 183
 prioritized feature lists, use of, 204–206
 problem domain (business logic), 184
 process control, 193–194
 process steps, 185
 process time, 185
 production metrics, 182–189, 287–288
 project parking lot, 198
 quality, focus on, 283–284
 queue time, 185
 return on investment, 224
 safety constraints, 217–218
 scheduling subject areas and feature sets,
 195–197
 scope constraint, 204–205
 S-Curve effect, and, 215–216
 self-organizing construction within planned
 assembly, 191
 setup time, 185, 203
 shape modeling, 182, 216
 “student syndrome,” 217–218
 subject areas, 193
 surgical team, use of, 202–203
 system representation, 182–183
 systems interfaces (SI), 184
 ten percent (10%) rule, 219–220
 Threshold state, and, 279–280
 throughput, 223
 time constraints, 207–209, 216–217
 time-modified prioritized feature lists, use of,
 205–206
 transferable quality improvement, 298–300
K
Kanban Approach, 4, 6
Knowledge Management System (KMS), use of, 93, 199
Koskela & Howell’s three-dimensional model for project management, 57

L
Labor, implications of adding additional, 274–276
Late start, 65–66
“Late” status, 68
Lead time (LT)
estimation of, 63
in Extreme Programing (XP), 228
in Feature Driven Development (FDD), 185
reduction of, 135
in Scrum, 254, 285
in Software Development Lifecycle (SDLC), 164
and software production metrics, 53
in Unified Development Process (UDP), 173
Lean production, 5–6, 284
Learning Organization Maturity Modelgoals of, 105
Stage 0-Analysis Ability, 105
Stage 4- Anticipated ROI and the Failure Tolerant Organization, 107
Stage 1-End-to-End Traceability, 106
Stage 2-Stabilize System Metrics, 106
Stage 3- Systems Thinking and a Learning Organization, 106–107
Level-of-effort (LOE) estimate, 50, 186–188
Lifecycle methods, software engineering, 18
Lifetime revenue per subscriber (LRPS), 150
Line of code (LOC), 50
Little’s Law, 53
Local safety considerations, 44–46, 219

M
Management accounting for systems
complex development systems, 18–20
emergent properties, 14
operating expenses (OE), 15
systems thinking, and, 14–15
throughput accounting, and, 15–17
value added, and, 16
Management roles and rules, 73–76, 109, 112
Manufacturing Resource Planning (MRP), 95
Marketing Requirement Document (MRD), 171
Maturity progression, 297
Morning roll call, use of, 213–215
Multitasking, role of, 218

N
Net profit, 21–22, 24, 179, 244
Net profit for services (NPBITDA), calculation of, 152

O
Object Oriented Analysis, 8
Object Oriented Software Engineering (OOSE), 289
Offshore development and process maturity, 121–122
One-dimensional model of project management, 57
On-going investment, role of, 142
On-site customer, role of the, 240
“On Time” status, 68
Operating expense (OE)
in Extreme Programing (XP), 244
factors of, 146
in Feature Driven Development (FDD), 222–223
importance of, 27
operating expense for services (OEBIDA),
calculation of, 151
reductions in, 135
in traditional methods, 178–179
Operational learning, 297–300
Operationally validated theories, 298
Operations review
attendees, 123
financial information, presentation of, 124–125
information, presentation of, 124–128
minute taking, 128
production metrics, presentation of, 125–126
program management metrics, presentation of, 127
project management metrics, presentation of, 127
purpose of, 123
timing, 124
Option theory, 234
Outsourcing decisions, 120–122
Overtime, effectiveness of, 81

P
Pair programming, use of, 236–237
Parallel paths, definition and identification of, 64–65
Peer reviews, use of, 210
People constraint, protecting the, 37–38
Perishable requirements, 32
PERT charts, 64, 69, 195–196
Pipelining, 229, 256
Plan by subject area (Step 3), 183
Planning game, 234
PMI models for project management, 55
Predictions of profitability, 23–24
Prioritized feature lists, use of, 204–206
Problem domain, 184, 291
Process improvement, role of, 110, 138
Process lead time, elements of, 88
Process map, problem domain versus, 291
Process maturity, improvements in, 282–283, 285
Product backlog, 251, 259
Production efficiency, 26
Production metrics
 in Extreme Programming (XP), 225–231
 in Feature Driven Development (FDD), 182–189, 287–288
governing rules, 113
 in Scrum, 251–256, 288–289
Production quantity, measuring, 52
Production rate (R)
 in Extreme Programming (XP), 227
governing rules, 111
 in Scrum, 253
 in Software Development Lifecycle (SDLC), 165
 in Unified Development Process (UDP), 173
Product line strategy, 74
Product management, agile
 cost accounting for Software Product Development, 141
management accounting, 138
on-going investment, role of, 142
operating expense, factors of, 146
process improvement, role of, 138
product mix, role of, 142–148
sales and throughput, calculation of, 137–138
scope constraint, management of, 143–144
throughput accounting approach, 138–142
time-based throughput model, appropriateness of, 140
 traditional cost accounting approach, 138
Product manager, 74–75
Product mix
 constraints, and, 146–148
effect on investment, and, 146
 revenue is the goal, when, 144–145
role of, 142–143, 154
Profitability, predictions of, 24
Profit by service release, calculation of, 153
Program manager, 74
Project buffer, 63, 119–120
Project delivery date, protection of, 63
Project manager’s new work, development of, 59–60
Project parking lot, 198
“Project” status, 68
“late” status, 68
“on time” status, 68
“red” status, 68
“watch” status, 68
“yellow” status, 68
Queue growth, 79
Queue time, 88, 175, 185
Rapid Application Development (RAD)
 inventory cap in, 265
lead time in, 266
 limitations of, 266–267
operating expense in, 266
 principles of, 265
Raw material
 in Extreme Programming (XP), 225
 in Scrum, 252
 in Unified Development Process (UDP), 171
Recovery and stretch of software production constraints, 81
“Red” status, 68
Refactoring, 93, 230, 239, 245–246, 257
Regression effects, 85
Reinersten’s Three Tiers of Control, 109–110
Release, 260–261
Release backlog, 251, 259
Release manager, 74
Resource constraints, 42–43, 68–70
Return on Investment, 4, 21, 24, 152–153, 179, 224, 245
Rigorous Software Methodologies (RSM), 292, 296, 299
Risk philosophy, 229, 256
ROI. See Return on Investment
Roles versus functions, agile management, 76
QA. See Quality assurance, importance of
Quality assurance, importance of, 5, 6, 81, 86–88, 277
Queue growth, 79
Queue time, 88, 175, 185
S

Safety constraints, 217–218
Sales and throughput, calculation of, 137–138
Scheduling subject areas and feature sets, 195–197
Scientific development, phases of, 7–9
Scientific management paradigm, 56
Scope constraint, 40–41, 143–144, 204–205
Scrum
 - cumulative flow, 253
 - engineering practices, 263
 - expediting policy, 255, 260, 285, 294
 - goal commitment, 261
 - goals of, 251
 - inventory, 252–254
 - inventory cap, 255
 - investment, 255
 - lead time, 254, 285
 - meeting, daily, 261
 - pipelining, 256
 - process step time, 255
 - product backlog, 251, 259
 - production metrics, 251–257, 288–289
 - production rate, 253
 - products, 251
 - raw material, 252
 - refactoring, 257
 - release, 251, 260–261
 - release backlog, 251, 259
 - review process, 263
 - risk philosophy, 256
 - Scrum Master, 259
 - senior management metrics, 257
 - sprint backlog, 251, 259
 - sprint planning and project management, 254
 - sprints, 251
 - statistical process control, and, 295–296
 - system representation, 252
 - team size and composition, 261–262
 - testing, 256
 - thirty day sprint, 260
 - throughput, 253
 - transferable quality improvement, 298–300
 - working environment, 262–263
S-Curve, 90–93, 215–216, 248–249
SEI Software Capability Model, 105
Self-organizing construction within planned assembly, 191
Service business economics, 150
Setup time, 88, 175, 185, 203
Shape modeling, 182, 216
Six Sigma, 6
Skills gap education, 113
Software Development Lifecycle (SDLC)
 - analysis process time, 165
 - coding process time, 165–166
 - design process time, 165
 - Function Point (FP) metric, 164
 - idleness, efficiency, and growing inventory levels, 170
 - inventory, 164, 166–167
 - inventory cap, 165
 - investment, 164
 - lead time, 164
 - process step time, 165–166
 - production rate, 165
 - raw material, functional specification for, 163
 - slack, lack of, 170
 - specialists and high inventory levels, 169–170
 - testing process time, 166
 - throughput, 164–165
 - uncertainty, role of, 168
 - variance reduction and waste, 168–169
 - waste and long lead times, 167
Software production metrics
 - agile software production metrics, 49
 - Average Cost Per Function (ACPF), 54
 - effort-based metrics, 50
 - expressions of inventory, 52
 - inventory-based metrics, 49
 - lead time (LT), and, 53
 - level-of-effort estimate, 50
 - measurement of inventory, 51–52
 - nonfunctional requirements, 51
 - OE per unit, 54
 - production quantity, measuring, 52
 - selection of, 49
 - tracking inventory, 53
 - traditional software production metrics, 50
Software Resource Planning
 - buffers, role of, 98–99
 - drum beat, role of the, 95
 - expediting requirements, effect of, 99–101
 - goals of, 95
 - release of requirements into the systems, planning, 96
 - starving a process, effect of, 97–98
 - subordination of the CCR, 95
 - swamping a process, effects of, 96–97
Theory of Constraints, and, 95
waste, cost and causes of, 101–103
Software services, financial metrics for
attributing value to a release, 152–153
average revenue per user per month (ARPU), 150
cash cost per user per month (CCPU), 150
definition of software service, 149
EBITDA equation, 150–151
lifetime revenue per subscriber (LRPS), 150
net profit for services (NPBITDA), calculation of, 152
operating expense for services (OEBIDA),
calculation of, 151
product mix, role of, 154
profit by service release, calculation of, 153
return on investment for services, calculation of, 152
ROI by service release, calculation of, 153
service business economics, 150
throughput for service, calculation of, 150–151
uncertainty, role of, 154
SPC theory. See Statistical Process Control theory
Specialists
availability of, 69
elimination of, 240
versus generalists, use of, 272–274
high inventory levels, and, 169–170
Sprint backlog, 251, 259
Sprint planning and project management, 254
Sprints, 251
Staffing decisions
bottleneck, addition of staff to a, 119–120
conventional view of turnover costs, 117
full-time engineer, cost of replacing a, 118
loss of throughput on a constraint, 118–119
offshore development and process maturity,
121–122
outsourcing decisions, 120–122
project buffer, impact on, 119–120
temporary engineer, cost of replacing a, 118–119
throughput accounting view of turnover costs,
117
turnover, role of, 117
Stand-up meeting, use of the, 238
Starving a process, effect of, 97–98
Statistical Process Control Theory, 5, 277, 295–296
Story points, 225
“Student syndrome,” 217–218
Subject areas, 193
Subject matter expert (SME), 221
Subordination, 31, 95
Surgical team, use of, 202–203
Swamping a process, effects of, 96–97
System Goal, 20
Systems interfaces (SI), 184
Systems thinking and learning organizations, 11
detail complexity, 15
general systems, 13–17
inherent complexity, 15
System testing, 79, 83–84, 86, 87
T
Task planning, 56–57
Tasks, 226
Taylorism, 169
Taylor, Frederick Winslow, 169
scientific management, 56
Team measurements, 115
Team size and composition, 261–262
Ten percent (10%) rule, 219–220
Test driven development (TDD), 238
Theoretical comparison, 6–7
Theory of Constraints, 3–4, 6, 11, 29–34, 95, 241
Theory of Scientific Management, 25
Thirty day sprint, 260
Three-dimensional model for project
management, 57
Threshold state, 278, 279–280
Throughput
in Extreme Programing (XP), 227, 244
in Feature Driven Development (FDD), 223
importance of, 27
improvements in, 134
increasing, 34
in Scrum, 253
in Software Development Lifecycle (SDLC),
164–165
in traditional methods, 179
in Unified Development Process (UDP), 173
Throughput accounting, 19–20, 21, 25–26, 117,
139–140, 141–142
Tick-IT, 5
Time-based throughput model, appropriateness
of the, 140
Time constraints, 38–40, 207–209, 216–217
Time-modified prioritized feature lists, use of,
205–206
Total Quality Management, 5, 6
Toyota Production System, 4, 6
TQM. See Total Quality Management
Tracking metrics, agile project, 67–68
Traditional cost accounting approach, 138
Traditional metrics versus agile principles, 271, 289
Traditional project management, 55–56
Traditional software production metrics, 50
Transferable quality improvement, 297–300, 298–300
Transformation, stages of, 18–19
True basis, calculation of, 132–133
Trust, goal of establishing, 41
Turnover, role of, 117

U
Uncertainty
aggregation of sequential and parallel processes, 46–47
budget constraint, protecting the, 41–42
chaos, 44
classification of, 43–44
foreseen uncertainty, 43
local safety considerations, 44–46
people constraint, protecting the, 37–38
principle of, 11, 37
resource constraints, protecting the, 42–43
role of, 154, 168
scope constraint, protecting the, 40–41
time constraint, protecting the, 38–40
unforeseen uncertainty, 44
variation, 43
Unforeseen uncertainty, 44
Unified Development Process (UDP)
agility, lack of, 175–176
artifacts, 174
documentation, 174
inventory, 172
inventory cap, 173
investment phase, 172
iterative incremental process, 173, 174
lead time, 173
process step time, 175
process time, 175
production rate, 173
project management, 175
queue time, 175
raw material, 171
setup time, 175
throughput, 173
use cases, 172
vision document, 171
wait time, 175
Unit testing, 82, 238
Unvalidated theories, 298, 299
Use cases, 172, 289–290
User interface feature sets, 192
User interface (UI), 184
User stories, assessment of, 233–234

V
Value-added
by a bank lending system, potential definitions for, 132
cost accounting tracking of, 57–58
in Feature Driven Development (FDD), 223
Value chain, software production in the, 25
Value efficiency, 26
Variance, 43, 168–169, 283
Vision document, 171
Visual control, 93–94, 199

W
Wait time, 89, 175, 185
Waste, 101–103, 167
“Watch” status, 68
“Waterfall” model for software production, 56, 161, 166–168. See also Software Development Lifecycle (SDLC)
Wheeler’s four states of control, 278, 295–296
Working capital requirements, determination of, 23–24
Working code (Q), 23
Work-in-process (WIP) inventory, 65, 166

Y
“Yellow” status, 68