

Class
libraries

JSlib

RDFlib

N
S
P
R

XPIDL
definitions

Type
libraries

Mozilla
registry

Preferences

Digital
Certificates

Se
cu

rit
y

XP
CO

M

Components
Po

rta
bi

lit
y

XPConnect

RDF

JavaJavaScript

Co
nt

ra
ct

ID

AppDevMozilla-16 Page 616 Thursday, December 4, 2003 6:38 PM

617

C H A P T E R

Overlay
database

XBL
definitions

Keyboard

Desktop
themes

GUI
toolkits

Fonts

Default
CSS

W3C
standards

DTDs

Skins

Mouse

RDF

JavaScriptcript

16

XPCOM Objects

AppDevMozilla-16 Page 617 Thursday, December 4, 2003 6:38 PM

618 XPCOM Objects Chap. 16

The Mozilla Platform is a base for building software applications. It contains
an object library of over a thousand objects. Many of these objects have noth-
ing to do with GUIs. This chapter explains which of those objects solves which
common programming problems.

A thousand example scripts is too big a goal for a single chapter—the
best that can be done here is to provide some pointers and guidance. In addi-
tion to this discussion, you’ll need to read the XPIDL interface definitions for
the objects discussed. Many script fragments are presented here to comple-
ment those interfaces. All solutions presented use JavaScript.

Mozilla’s object library consists mostly of XPCOM components. Without
XPCOM components, an application programmer is trapped within an XML
document, whether it be HTML or XUL. Inside such a document, URLs,
HTTP, SOAP, and WSDL are the only mechanisms out. By adding XPCOM
components, everything opens up dramatically. Components add support for
networking, databases, files, and processes—all the meat and drink of tradi-
tional software applications. XPCOM components are available on all plat-
forms where Mozilla runs and are entirely portable with only a very few
exceptions.

Mozilla’s set of XPCOM components are just like any 3GL or OO library.
Just as C++ and Java have a stream concept and stream objects, so too does
Mozilla. Just as C, Perl, and numerous other languages have a file concept, so
too does Mozilla. Mozilla objects are therefore standard programmer fare—
almost.

The reason that these objects are

almost

standard fare is because Mozilla
is still version 1. This newness has affected the set of components that are
available. Rather than having a very broad range of low-level objects, Mozilla
consists of some low-level objects, some mid-level objects, and some very appli-
cation-specific high-level objects. The platform was first designed to build a
Web browser application suite, and so objects exist to support that goal at all
levels of abstraction. The platform has not had the extensive, general-purpose
design that the Java class libraries have received. On the other hand, a thou-
sand objects is not a trivial total; it approaches the size of Perl’s extensive
library of modules.

A second nonstandard aspect of Mozilla’s objects is that many objects are
network-centric. Navigator, Messenger, and Chat applications are all Internet
clients that interact with servers, and this is reflected in the object library.
Some simple operations, like loading a file, are complex because the file might
be anywhere in the world. This complexity affects the interfaces used. Those
interfaces are also constrained by Mozilla’s security system.

If an application is not a Web browser, email client, or XML display sys-
tem, then Mozilla’s objects still have plenty to offer, but some of the highly spe-
cialized objects available will be of little use. On the other hand, if the
application contains browser-like functionality, then specialized objects speed
the development process greatly.

AppDevMozilla-16 Page 618 Thursday, December 4, 2003 6:38 PM

16.1 Concepts and Terms 619

As shown in the NPA diagram for this chapter, the back half of Mozilla is
the home of XPCOM components. The XPCOM and XPConnect technologies
rely on various external files; a registry (a simple database like the Microsoft
Windows registry) and type libraries (component descriptions) are foremost.
Preferences and certificates are two aspects of security also stored external to
components. From a programmer’s point of view, the most interesting part of
the XPCOM system are the externally stored XPIDL files, which contain read-
able descriptions of all the XPCOM interfaces.

This chapter begins with some of the key concepts of the components’
environment. It then moves on to address common programming tasks and
Mozilla’s solutions. General programming tasks come first: more application-
specific tasks come later. Finally, a look is taken at the platform itself and its
security systems. The “Hands On” session in this chapter has an extensive
series of examples that show how to script objects associated with RDF.

16.1 C

ONCEPTS

AND

 T

ERMS

Mozilla’s collection of XPCOM components is large and a world of its own. To
write scripts effectively, pick up some of the established jargon used at the
scripting level.

16.1.1 Reading Others’ Code: Naming Conventions

Mozilla is a huge piece of software, and regular exploration of features is com-
monplace. Most Mozilla code and documentation have a particular style that
is worth becoming accustomed to. That style appears in the following sources:

☞

The XPIDL definition files that define the existing XPCOM interfaces.
These interfaces are help files that you can’t do without.

☞

The numerous at-work examples that can be found in the chrome of a
built Mozilla application.

☞

Less importantly, the C/C++ source code of the platform. This code is
more challenging and of less immediate value, but it is also the ultimate
authority.

Of these information sources, the XPIDL files are the main item that you
need to survive. See the introduction of this book for a URL for those files.

The Mozilla coding style uses naming conventions as usage hints. These
hints are especially important in JavaScript code. JavaScript syntax provides
only weak signatures for objects and methods compared with compiled lan-
guages like Java or C++.

Here follows some examples of naming hints used by Mozilla code.
Mozilla uses prefix characters to hint at the nature of an XPCOM inter-

face. The most common prefix is

nsI

, meaning “netscape Interface.” This pre-

AppDevMozilla-16 Page 619 Thursday, December 4, 2003 6:38 PM

620 XPCOM Objects Chap. 16

fix is used to identify an interface that is available for application programmer
use. Other prefixes like

imgI

,

inI

,

jsdI

, and

mozI

 (image, inspector, Java-
Script debugger, and Mozilla, respectively) serve the same purpose, but they
are intended to be application- or technology-specific. They are still available
for general use. The plain prefix

ns

 (without a trailing

I

) is used for objects
that are not intended for application programmer use. Most occurrences of
plain-

ns

 prefixes are hidden inside the platform.
Second, the ECMAScript standard allows a host object to report its type

as a string. In Mozilla, this string is calculated by stripping a prefix from the
current XPCOM interface name for that host object. The characters stripped
are

nsIDOM

, so an object presenting the

nsIDOMHTMLDocument

 interface will
report its JavaScript object type as

HTMLDocument

.
Third, capitalization is also used for interface attributes and methods:

☞

Constants in DOM-based interfaces are written in

ALL_UPPERCASE_STYLE

.

☞

Constants in non-DOM interfaces typically use

initCapStyle

.

☞

Variables and methods are written in

initCapStyle

.

☞

RDF interfaces are an exception, they use

InitCapStyle

 for method
names—the first letter is capitalized.

Either way, XPIDL and JavaScript cases always match. Inside the C/C++
of the platform, method names are translated from

initCap

 to

InitCap

, and
interface names sometimes appear with the XPIDL capitalization and some-
times appear in

ALL_CAPS

.
Mozilla makes frequent use of a single-character prefix for interface

attributes and method arguments. This notation is common in XBL bindings,
platform C/C++ code, XPIDL interfaces, and ordinary JavaScript. JavaScript’s
use of these prefixes is somewhat patchy. These single-character prefixes are
described in Table 16.1.

Table 16.1

Mozilla single-character name prefixes

Prefix
Frequency of
appearance Meaning

a Common aVar is a temporary variable or a function or method
argument. It stands for a value or object of ordinary sig-
nificance, one that is usually subjected to processing.
aFile is an example.

e Occasional eVar is a value, usually a constant that is one item of an
enumeration. eTuesday is an example.

g Occasional gVar is a global variable; either global to the current
window (the JavaScript global object) or entirely global
in the case of C/C++. gMenuControllers is an example.

AppDevMozilla-16 Page 620 Thursday, December 4, 2003 6:38 PM

16.1 Concepts and Terms 621

One further prefix used in the Mozilla Platform is

PR

. PR stands for Por-
table Runtime, and NSPR stands for Netscape Portable Runtime. NSPR is a
library and coding standard designed to overcome the portability problems of
C, C++, and operating systems. The Mozilla Platform uses a set of data types
that are guaranteed portable, and these types have PR prefixes. This notation
is occasionally exposed to XPCOM and to the application programmer.

16.1.2 Modular Programming

The Mozilla Platform breaks technology up into pieces a number of different
ways. Almost every technical term for

part

 or

piece

 that software engineering
offers is used by Mozilla. Correct usage of these terms is given here:

☞

binding

.

A binding is an interface written down in a particular program-
ming language. In Mozilla, a binding is either an ECMAScript interface
stated in the W3C DOM standards or an XBL binding.

☞

class

. The only classes in Mozilla are the component classes of XPCOM.
Each class is used to create zero or more objects. JavaScript 2.0 (ECMAS-
cript 1.4) will have class definitions of a different type, but JavaScript 1.5
does not have these.

☞

component

. A component is a thing with unique identity within the
XPCOM system. It is a class with a CID (a component identifier) and a
matching ContractID (like

@mozilla.org/test;1

), or it is an interface
with an IID (an interface identifier). Because interfaces can’t be used

k Occasional kVar is a key value—one of a set of values that some
specific variable can take on. It is similar to the e prefix,
except that key values are often bitmasks or strings and
so don’t number sequentially from one. kMimeType is
an example.

m Common mVar is a member (property or attribute) of an object. It
is usually used to store private data. mLength is an
example.

n Occasional nVar usually holds a total of some kind. It is an ordi-
nary variable.

s,i,b,f,r,p Rare These prefixes are used inside the platform’s C/C++ to
mean a string, integer, Boolean, floating-point number,
short integer, and pointer type, respectively. They are
not usually seen in JavaScript code, which sometimes
uses f to mean file or folder instead.

Table 16.1

Mozilla single-character name prefixes (Continued)

Prefix
Frequency of
appearance Meaning

AppDevMozilla-16 Page 621 Thursday, December 4, 2003 6:38 PM

622 XPCOM Objects Chap. 16

without a concrete implementation but classes can, classes are thought of
as the only real components.

☞

interface

. An interface is a set of access points to an object. XPCOM
interfaces are the only interfaces in Mozilla. Any object that supplies
those access points is said to implement that interface. Each XPCOM
object and XBL binding implements zero or more XPCOM interfaces;
JavaScript objects may also implement XPCOM interfaces.

☞

library

. The Mozilla Platform has a number of dynamically linked
libraries, but those libraries are of no particular interest to the applica-
tion programmer. General-purpose JavaScript scripts may informally be
called libraries. Type libraries are data files that define XPCOM inter-
faces. These are created when the platform is compiled and automati-
cally used by XPConnect.

☞

module

. XPCOM components in the Mozilla Platform are grouped into
modules, but this is only obvious to developers of the platform. Modules
have no meaning to application programmers, unless a whole new
XPCOM module is being created.

☞

object

. Mozilla contains XPCOM objects and JavaScript objects. An
XPCOM object is of a given class type and implements one or more inter-
faces. A JavaScript object may be anything from a simple data structure
to a complex host object. JavaScript host objects are either XPCOM
objects or Java objects.

☞

package

. A group of related files installed in Mozilla’s chrome is called a
package. A package has a name that matches a file system directory
name.

☞

prototype

. A JavaScript object used as the basis for the construction of a
new JavaScript object is called a prototype.

16.1.3 Foreign-Type Systems

The XPCOM system gives JavaScript access to other programming environ-
ments. Those other environments have their own basic types. Either those for-
eign types must be automatically converted to JavaScript types (and back
again) or those foreign types must provide some kind of usable interface.

There are five foreign-type systems in Mozilla that are accessible from
JavaScript:

☞

The fundamental platform types implemented by NSPR

.

 These are
the portable C/C++ types out of which the platform is built out.

☞

RDF data types

.

 These are the types Mozilla can identify in RDF docu-
ments.

☞

XML schema data types

. Mozilla can intelligently parse files that have
this format and can identify the standard primitive types contained
inside.

AppDevMozilla-16 Page 622 Thursday, December 4, 2003 6:38 PM

16.2 General-Purpose Scripting 623

☞

XML RPC XDR

. The RPC-over-XML network protocol is supported by
Mozilla, which includes underlying XDR network-independent data
types.

☞

Java

.

 A Java JVM can be run as a Mozilla platform plugin, which gives
access to Java-typed objects.

Of these type systems, automatic conversion to and from JavaScript
works only for Java. The other four type systems are available from the follow-
ing specific XPCOM interfaces:

☞

The NSPR types are all represented by interfaces that derive from

nsISupportsPrimitive

, like

nsISupportsPRInt32

.

☞

RDF data types have interfaces

nsIRDFLiteral

,

nsIRDFDate

, and

nsIRDFInt

, all based on

nsIRDFNode

.

☞

XML schema data types are named as constants in

nsISchemaSimple-
Type

 and

nsISchemaBuiltinType interfaces.
☞ The XDR encoding of XML RPC uses the NSPR types. The nsIXmlRpc-

Client interface has a factory method that can create NSPR-typed
objects.

In addition to these foreign type systems, the XPCOM architecture and
the components specified using that architecture are a type system of their
own, one based on object types (classes and interfaces) rather than simple
data types. This set of classes and interfaces is the main set of type symbols
that application programmers use when building nontrivial scripts.

16.2 GENERAL-PURPOSE SCRIPTING

This topic explains how to solve generic programming tasks using Mozilla.

16.2.1 Command-Line Arguments

When the Mozilla Platform is started up via the command line, it remembers
the command-line arguments passed in. On Microsoft Windows, the platform
does not remember the command-line arguments used to start up further win-
dows that are managed by the same running instance.

To access the command-line arguments, use this component and inter-
face:

@mozilla.org/appShell/commandLineService;1 nsICmdLineService

The nsICmdLineService exposes argc, the count of arguments, but not
argv, the list of strings making up the arguments. The argc count is the num-
ber of argument-value pairs, not the number of whitespace-separated strings,
which is the traditional UNIX/Windows definition. Because argv is not sup-

AppDevMozilla-16 Page 623 Thursday, December 4, 2003 6:38 PM

624 XPCOM Objects Chap. 16

plied, you must guess what parameters were supplied, using the getCmd-
LineValue() method. A typical call to this method is

var url = cls.getCmdLineValue("-chrome");

If the argument passed in wasn’t supplied at invocation time, then null is
returned.

This interface also contains a factory method getHandlerForParam(),
which returns an object with the nsICmdLineHandler interface. This
returned object is a read-only record that contains configuration information
for a handler, such as default values. Each command-line handler that exists
adds to the command-line options available to the platform. Such handlers can
be created in JavaScript if necessary.

It is not possible to retrieve the original, raw command-line string using
JavaScript.

16.2.2 Data Structures and Algorithms

The JavaScript language provides basic arrays and objects, which are enough
for most simple needs. Separate from JavaScript, the Mozilla Platform pro-
vides a huge data model that is an implementation of the W3C DOM stan-
dards. This data model has obvious uses in representing HTML, XUL,
MathML, SVG, and XML documents generally. It is covered under the topic
“Web Scripting” as well as being described in Chapter 5, Scripting.

Apart from the DOM, Mozilla provides very few data structure inter-
faces. What exists is used mostly to expose platform-internal data structures
to the scripting environment. They are not really intended to be the basis for
new data structures, although there is nothing wrong with reusing these
interfaces when developing application objects.

XPCOM collection objects that can be used alone are listed in Table 16.2.
These collections are not recommended for most uses, but are worth noting.

JavaScript is flexible to start with, and these collections do not add much
by themselves. These objects are complemented by a number of cursor or iter-
ator interfaces. There are two varieties of cursor in XPCOM. The simpler vari-
ety consists of enumerators:

nsIEnumerator nsIBidirectionalEnumerator

Enumerators are read-only cursors that step through a given collection.
The collection must be static, and only one enumerator at a time is allowed.
These interfaces return the nsISupports interface for each object they enu-
merate.

The more complex variety of cursor is called an iterator. Iterators support
tasks like: stepping through dynamically updated collections, inserting items
into collections, and simultaneous use of iterators on a given collection. These
iterators, all with interfaces named

nsI{something}Iterator

AppDevMozilla-16 Page 624 Thursday, December 4, 2003 6:38 PM

16.2 General-Purpose Scripting 625

are rarely needed by themselves but may be useful as a design guide if com-
plex application data structures are required. They are occasionally produced
by other XPCOM interfaces.

The DOM 2 Traversal and Ranges standard supplies a powerful iterator.
In Mozilla it is named nsIDOMNodeIterator. It is occasionally useful when
working with DOM data structures.

The Mozilla Platform does not provide much in the area of general-
purpose algorithms. JavaScript provides regular expressions and the
Array.sort() method, but there is little beyond that. The sort functionality
used in templated XUL cannot be applied elsewhere.

16.2.3 Databases

The Mozilla Platform has support for databases, but that support is only
slowly emerging. Only the most trivial support is available in the default
builds of the Mozilla application suite; other support must be sought out and
set up before it is available for use. Platform support for databases falls into
five groups: flat files, relational databases, application-specific databases, fact
stores, and caches.

Table 16.3 describes the flat file databases inside Mozilla.
The last two items deserve some explanation. dbm is an old version of the

standard Berkeley db package. It is used to create several security files stored
in the user’s profile. This package is not directly exposed to XPCOM and can-
not be used from JavaScript.

Table 16.2 XPCOM collection objects

Interface Implemented in Description

nsIArray @mozilla.org/array;1 An XPCOM version of a read-only
JavaScript array

nsIMutableArray @mozilla.org/array;1 Adds methods that allow modification of
an nsIArray’s contents

nsICollection @mozilla.org/supports-array;1 Adds a simple collection interface to a
serializable stream; not generally useful
from JavaScript; use any of the other
interfaces

nsIDictionary @mozilla.org/dictionary;1 A simple collection that holds key-to-
value pairs (a map), implemented in
JavaScript; in Microsoft Windows a dic-
tionary is equivalent to a map; poten-
tially useful

nsIProperties @mozilla.org/properties;1 A simple collection that holds key-to-
value pairs, implemented in C/C++ (a
map); in Java a properties collection is
equivalent to a map

AppDevMozilla-16 Page 625 Thursday, December 4, 2003 6:38 PM

626 XPCOM Objects Chap. 16

Mdb, the “message database,” is a custom-designed, single-file database
invented for Mozilla’s use. It supports the concepts of cursors, tables, rows,
cells, and schema information. It supports both relational data and more gen-
eral attribute value lists, as well as references between rows and tables so
that a row can exist in several tables at once. It is not multiuser or multicursor
and has no transactions and no recovery process. It is a general-purpose file
format for self-referential data and has a low-level format equivalent to the
basic structure of RDF. It has an XPCOM interface, but no XPIDL definition,
and therefore no matching type library. No type library means it is not avail-
able from JavaScript.

On the relational database side, the default version of Mozilla has no
direct access to relational databases. Access can be added, though. Table 16.4
lists the options both available and forecast during the release of version 1.4.

Finally, the platform has some application-specific flat file formats. These
file formats are all read and written indirectly using high-level interfaces.
Their location is fixed inside the current user profile. Table 16.5 lists these
databases.

The cookies and bookmarks files are written entirely each time a change
is made. The address book file is partially written each time a change is made.

“Mork” is a simple flat file database built using the Mdb technology, which
was described in the discussion of Table 16.3. It provides a set of specifically
formatted data structures suitable for storing address book cards and for sta-
tus information about the user’s current email and newsgroup windows. Like
Mdb, Mork is not accessible from JavaScript. You can see Mork database con-
tent by viewing email and news control files with a text editor. Those files have
.mdb suffixes.

Table 16.3 General-purpose flat file databases in Mozilla

File format
Application
support Covered under what topic?

Raw files Read/Write “Files and Folders,” “Data Transfer”

DTD documents Read Only Chapter 3, Static Content

Properties files Read Only Chapter 5, “Scripting”—see stringbun-
dles example

Preferences Read / Deferred Write “Preferences”

XML Documents Read or Write “Web Scripting”

RDF Documents Read / Flushed Write “Data Sources”

Mozilla Registry Read / Write Chapter 17, Deployment

dbm Unavailable See text

Mdb Unavailable See text

AppDevMozilla-16 Page 626 Thursday, December 4, 2003 6:38 PM

16.2 General-Purpose Scripting 627

The Mork/Mdb file format is a disk-based format. The somewhat equiva-
lent memory-based format is an RDF fact store, the best example being the
in-memory-datasource data source.

The other database-like features in the Mozilla Platform are caches: the
Web cache, which caches documents of remote origin, and the fastload (or
XUL) cache, which holds chrome files that make up displayed windows.

Table 16.4 RDBMS add-ons for Mozilla

Database Installation method
Cross
platform? Notes

MySQL Downloadable XPInstall
package

Yes See mysqlxpcom.mozdev.org

MySQL Recompile Mozilla 1.5+ Linux/
UNIX

See www.mozilla.org/projects/sql

PostgresSQL Recompile Mozilla 1.3+ Linux/
UNIX

See www.mozilla.org/projects/sql

Protozilla Downloadable XPInstall
package

Linux/
UNIX

Adds the ability to extend Mozilla’s
network protocol support to other
databases. See http://pro-
tozilla.mozdev.org

Web-based Make a Web server avail-
able

Yes Standard Web-based solution
for database access; use HTTP
GET and POST requests to
manage a database client behind
the server

Table 16.5 Application-specific flat file databases in Mozilla

File format Notes

Cookies file

Bookmarks file

Address book Uses Mork

News server control file Uses Mork

Newsgroup hostinfo Standard format newgroup control file

Email server control file Uses Mork

Email folder Standard UNIX mail(1) format mail folder

Mork See following discussion in text

AppDevMozilla-16 Page 627 Thursday, December 4, 2003 6:38 PM

628 XPCOM Objects Chap. 16

16.2.4 Environment

The environment of the currently running process can be retrieved one vari-
able at a time using this component and interface:

@mozilla.org/process/util;1 interface nsIProcess

The nsIProcess interface has a method getEnvironment() that
returns the value for a supplied variable name. Supplied variable names are
converted from Unicode to 8-bit extended ASCII, and values returned are Uni-
code values converted from the 8-bit extended ASCII value retrieved.

The operating system type or version can be detected without use of the
environment. Just examine the window.navigator.userAgent property.

Versions of Mozilla built with debug support require that the environ-
ment variable MOZILLA_FIVE_HOME be set to the directory that the Mozilla
binaries are installed in.

There is no environment variable that specifies the location of the cur-
rent user’s profile (or any profile). Setting such a variable by hand requires
guesswork or foreknowledge since profile names are encrypted. The profile
directory can be found using a well-known alias. See “File System Directory.”

A number of debug environment variables are available when the
Mozilla build is compiled with --debug-enabled. To understand their use,
the source code for the platform needs to be examined closely. Their output is
often too cryptic for general use.

16.2.5 Files and Folders

This topic describes how to locate and specify files and folders on the computer
on which the platform is installed. The term folder is used for a file system
directory because in Mozilla, the term directory means directory service.

Handling files in Mozilla is made complex by portability constraints and
Web standards. The XPCOM objects used to represent files must be portable
across all operating systems (or at least UNIX, Microsoft Windows, and Mac-
intosh), and the idea of a file or folder must somehow interoperate with the
idea of a URL.

The need for portability affects the names used for files and folders. The
Mozilla Platform does not have a concept of full path name because operating
system paths are expressed in different syntaxes and because volume-oriented
operating systems like MacOS don’t have paths at all. There are a number of
volume-oriented operating systems still. Even the pathless file name part of a
file identifier can be problematic. Mozilla’s response to these constraints is to
keep explicit use of paths and file names at arm’s length, except in cases
where portability is not critical.

This arm’s length approach is implemented with the nsIFile interface.
An object with that interface is frequently used in scripts, but it is rarely spec-
ified or inspected directly. Whatever naming information is available inside
the nsIFile object stays there. Only in nonportable cases is the naming infor-

AppDevMozilla-16 Page 628 Thursday, December 4, 2003 6:38 PM

16.2 General-Purpose Scripting 629

mation manipulated directly. That means the nsIFile object is only rarely
created directly with its standard XPCOM pair:

@mozilla.org/file/local;1 nsIFile

Instead, objects with this interface are produced indirectly, using meth-
ods belonging to other interfaces. Files that are stored locally are represented
by objects with a specialized nsIFile interface. The XPCOM pair responsible
for that specialized interface is

@mozilla.org/file/local;1 nsILocalFile

Both interfaces apply to folders as well as files. There is also an older
interface for files. It is deprecated (unfashionable) and shouldn’t be used at all:

@mozilla.org/filespec;1 nsIFileSpec

The application programmer therefore relies on that object being manufac-
tured, initialized, and returned by a method of some other interface. Overall,
there are many ways to bring such an object into existence:

1. A directory service that retains a list of well-known files and folders can
be consulted if the nature of the needed file or folder is known in
advance.

2. Users can be prompted to identify the file or folder. Whatever they pick is
the file or folder required.

3. The file or folder can be deduced from a URL. This does not automatically
work; the context of the URL and file are both important.

4. The file or folder can be deduced from another file or folder object, if that
other object is somehow related. Finding the parent directory of a given
file requires only nsIFile’s parent property; finding the contents of a
folder requires only nsIFile’s directoryEntries property.

5. If portability is not an issue, then the file’s full or partial UNIX or Win-
dows path name can be specified as a JavaScript string and an object ini-
tialized with that string.

6. Finally, if an nsIFile object is used to create a stream, channel, or other
XPCOM object, then that other object can usually reveal the originating
nsIFile object at any later point.

Examples of these dot-points are given in “File System Directory.”
The nsIFile interface addresses portability issues, but the issue of inte-

gration with Web URLs remains. URLs are maintained in objects with the
nsIURL interface. See “Web Scripting” for details on that interface. Files and
URLs can be converted to each other using this XPCOM pair:

@mozilla.org/network/protocol;1?name=file nsIFileProtocolHandler

This interface provides newFileURI() and getFileFromURLSpec()
methods that do the required conversion. newFileURI() is also available on
the nsIIOService interface.

AppDevMozilla-16 Page 629 Thursday, December 4, 2003 6:38 PM

630 XPCOM Objects Chap. 16

The nsIURL and nsIFile interfaces also allow a URI or file specification
to be dissected into its component parts. Those parts can be read or updated.
Simple string operations may be sufficient to turn the naming information
inside an nsIFile object into an nsIURL object and vice versa. Files and
URLs can therefore also be connected by application-specific string manipula-
tion code.

16.2.5.1 Using the File System Directory The fi le system directory i s
described in “Platform Configuration,” where some further examples are
given. This piece of code gets by the shortest route a folder suitable for holding
temporary files. Listing 16.1 illustrates.

Listing 16.1 Directory specification of an nsILocalFile object.
var Cc = Components.classes;
var Ci = Components.interfaces;
var dp = Cc["@mozilla.org/file/directory_service;1"];
 dp = dp.createInstance(Ci.nsIDirectoryServiceProvider);

var folder = dp.getFile("TmpD", {});

This approach reveals only those files and folders that already have a
nominated purpose for the Mozilla Platform. The code revolves around the
special folder alias TmpD. It must be looked up in a table. Those tables are com-
piled in “File System Directory.”

16.2.5.2 Using the End User To create an nsILocalFile object, one solu-
tion is to ask the user as Listing 16.2 shows.

Listing 16.2 User-specification of an nsILocalFile object.
var file;
var CcFP = Components.classes["@mozilla.org/filepicker;1"];
var CiFP = Components.interfaces.nsIFilePicker;
var fp = CcFP.createInstance(CiFP);

// use whatever nsIFilePicker options are suitable
fp.init(window, "File to Read", Picker.modeOpen);

if (fp.show() != fp.returnCancel)
 file = fp.file;

The nsIFilePicker object manufactures an nsILocalFile object in
response to the user’s selection.

If the object created holds a folder name, it can be converted to a more
specific file or folder using the appendRelativePath() method, which
accepts relative path names that do not include “..”. The appended path
can, with care, be hand-constructed without the loss of portability. Fortu-

AppDevMozilla-16 Page 630 Thursday, December 4, 2003 6:38 PM

16.2 General-Purpose Scripting 631

nately, all of Microsoft Windows, UNIX, and Macintosh support the forward
slash (/) character as a path separator for subpaths, even though a Microsoft
Windows DOS Box does not. Be aware that some Windows users (and some
Linux users in rare cases) may not have Long File Name (LFN) support,
which limits file names to “8.3” or 14-character names. The nsIFile inter-
face supports a number of attributes and methods that assist with portable
path construction.

Finally, if the application does not need to be portable, or if separate
implementation code for each supported platform are permitted, then an
nsILocalFile object can be initialized directly from a string using the init-
WithPath() method. Backslash characters used in Microsoft Windows paths
should be escaped (\\) or forward slashes used instead. Separate implementa-
tion code can be as simple as a series of if statements that test the current
platform.

16.2.5.3 Using a Literal or a URL If the application does not need to be por-
table, or if separate implementation code for each supported platform is main-
tained, then an nsILocalFile object can be initialized directly from a string.
A suitable piece of code is simply as shown in Listing 16.3.

Listing 16.3 Literal specification of an nsILocalFile object.
var file;
var CcLF = Components.classes["@mozilla.org/local/file;1"];
var CiLF = Components.interfaces.nsILocalFile;
var file = CcLF.createInstance(CiLF);

file.initWithPath("C:\\WINDOWS\NOTEPAD.EXE");

The literal “C:” could be replaced with a portable file system root folder
using the DrvD alias and the file system directory. Recall that Microsoft Win-
dows supports both forward slashes and backslashes as path separators, so
those too could be made more portable.

Alternately, the location of a local file might be contained inside a URL.
The portable way to achieve conversion is with this code:

var conv = Cc["@mozilla.org/network/protocol;1?name=file"];
conv = conv.createInstance(Ci.nsIFileProtocolHandler);

var url = ... // Some nsIURL that already exists

var file = conv.getFileFromURLSpec(url);

That URL will either be prefixed with file:, or it will refer to a virtual
directory behind a local Web server. In either case, the URI scheme may be
chopped off and replaced with a different file system root. For example,

file.initWithPath(myURL.filePath.replace(/\|/,":"));

AppDevMozilla-16 Page 631 Thursday, December 4, 2003 6:38 PM

632 XPCOM Objects Chap. 16

Here, myURL is an nsIURL object. The replace() regular expression
operation changes a URL fragment like “C|/test” to “C:/test”. Beware that
under Microsoft Windows, network-mapped paths (UNC paths) like \\sat-
urn\tmp require a prefix of five forward slashes (http://///saturn/tmp)
when expressed as URLs, and that convention is not finalized at this time.

16.2.5.4 Working on Files and Folders After a file is located and repre-
sented internally by an object, it’s usual to read, write, or manipulate that file.

File descriptors, file pointers, and file handles are not available in the
Mozilla JavaScript environment. That means that file-descriptor-based pipes
cannot be created. The nsIPipe interface creates an application-level pipe,
not a traditional UNIX pipe. The platform cannot be used to create named
pipes (or symbolic links), but such pipes can be read from and written to if
they already exist. In short, direct low-level file access is not the way to go.

Instead of file handles, Mozilla uses objects. Instead of manipulating a
single object, a script must manipulate at least two objects. One object identi-
fies the file or folder that is to be used—an nsIFile or nsILocalFile object.
This object is a file name specifier. The other object is a stream that data are
read from and written to. This object is a file content specifier. Both objects
must be created, and this must be done in such a way that they are connected
to each other. “Data Transfer” in this chapter discusses streams and other con-
tent specifiers extensively. Streams are similar to Java or C++ streams, but
there is no operator overloading at work.

16.2.5.5 Working on ZIP and JAR Archives This XPCOM pair uses nsI-
File concepts and provides access to the contents of locally stored .zip and
.jar files:

@mozilla.org/libjar/zip-reader;1 nsIZipReader

Zip files can also be created with this interface.
The stream converters noted in “Stream Content Conversion” can be

used to work with a stream of compressed characters in their raw form.

16.2.6 Interrupts and Signals

There is no way to catch or send operating system signals from JavaScript. To
catch signals, an XPCOM component must be written in either Java or C/C++.

The nsIThread XPCOM interface is used to manage a piece of code that
can be interrupted. This will work only if the code to be interrupted is not
JavaScript. The JavaScript interpreter in the Mozilla Platform is single-
threaded and can’t interrupt itself. This means that thread-based interrupts
are not usable for entirely scripted applications.

The event-oriented technologies described in Chapter 6, Events, and the
command system of Chapter 9, Commands, are the main alternatives to inter-
rupts.

AppDevMozilla-16 Page 632 Thursday, December 4, 2003 6:38 PM

16.2 General-Purpose Scripting 633

16.2.7 Network Protocols

Mozilla provides support for well-known network application protocols like
FTP. Mozilla assumes the underlying transport layer will be TCP/IP. Other
protocols, such as RS232, X.25, or TP4 must be overlayed with TCP/IP before
they are usable. Mozilla supports the following low-level protocols:

☞ TCP/IP v4 and v6. v6 is not enabled in the default build and must be
compiled in with --enable-ipv6. The Configuration windows in Classic
Mozilla do not yet support IPv6.

☞ DNS. The platform supports multithreaded (parallel) DNS look-ups.
☞ FTP. Mozilla supports FTP, but the Download Manager does not support

FTP resume as of version 1.4.
☞ RPC. Mozilla provides support for RPC over XML only, not RPC over

NDR/XDR. The latter approach is the traditional method of doing RPC.
☞ SSL (Secure Sockets Layer) and SOCKS. Mozilla supports SSL ver-

sions 2 and 3, and SOCKS 4.0 and 5.0. SSL is used for Secure SMTP
(SMIME) and Secure HTTP (HTTPS) protocol support.

Protocols are used indirectly in Mozilla. Resources are identified by URL
and the access method that prefixes the URL (like http:) determines the proto-
col used. The protocol is then exploited automatically by the platform. In gen-
eral, a channel object accepts a URL, and everything “just works” from then
on. Nevertheless, individual protocols do exist as separate objects and can be
created as instances of this XPCOM pair:

@mozilla.org/network/protocol;1?name={x} nsIProtocolHandler

In this component name, {x} should be replaced with a value like ftp or
http. A dump of the window.Components.classes array reveals all the
protocols (actually URL schemes) for which Mozilla has components.

Mozilla can be configured at the IP port level using preferences. Individ-
ual ports can be enabled or disabled. Enabling such ports has no effect unless
they are enabled in the operating system as well. Enabled ports can create
security holes at the application level and are not recommended unless suit-
able firewalls are in place. See the preferences displayed by the URL
about:config that start with network for an extensive list of configuration
options.

Application programmers also have access to sockets. Operating systems
represent a TCP/IP connection with a socket library that maps the TCP/IP
connection to a file descriptor. Mozilla wraps the connection and descriptor
details up into an object. Such a socket object is the lowest level network data
structure available in the default build of the platform.

Finally, the Optimoz project, documented at www.mozdev.org, can be
used to extend the network support of Mozilla. Using Optimoz, new protocols
that are written in JavaScript alone can be added. The requirements for such

AppDevMozilla-16 Page 633 Thursday, December 4, 2003 6:38 PM

634 XPCOM Objects Chap. 16

protocols follow: They must be built on top of a TCP/IP socket; they must be
tolerant of small time delays; they must implement the nsIProtocolHan-
dler interface; and the JavaScript code must register a full XPCOM compo-
nent implementation for the created handler.

We now turn to specific low-level network-oriented tasks. For applica-
tion-level communications, see “Data Transfer” and “Web Scripting.”

16.2.7.1 How to Find an IP Address To find the IP address for a given
domain name, use this XPCOM pair:

@mozilla.org/network/dns-service;1 interface nsIDNSService

An object so created returns the IP address for a given domain name, or the
current host, as a string like “192.168.1.10”. Resolving domain names is
slow, so if you don’t want the application to freeze, use the lookup() method,
which requires a listener object with the nsIDNSListener interface. The
request will then proceed asynchronously. Make this listener out of a pure
JavaScript object.

16.2.7.2 How to Create a Socket To create a socket connection, several steps
are required.

To use a socket you must ultimately create an nsITransport object.
After you have this object, you can ignore the socket to a degree and, instead,
use the techniques described in “Data Transfer.” Socket access is quite
abstract and high level; there is no ioctl(2) API that can be used to config-
ure socket options.

To get this nsITransport object, you must first deal with the possibility
that there is a network proxy between the platform and the computer at the
other end of the socket. Create an object that is an nsIProxyInfo object for
the desired remote address if you aren’t sure whether a proxy exists. An
nsIProxyInfo object, can be created using the newProxyInfo() or exam-
ineForProxy() methods of this XPCOM pair:

@mozilla.org/network/protocol-proxy-service; nsIProtocolProxyService

Next, using the resulting nsIProxyInfo object, or null if it is certain
no proxy exists, create the factory object that is responsible for creating nsI-
Transport objects for sockets. That factory object is created with this
XPCOM pair:

@mozilla.org/network/socket-transport-service;1 nsISocketTransportService

With that factory object, create an nsITransport object by passing the
nsIProxyInfo object to the createTransport() method. The resulting
object will also support the nsISocketTransport interface, which is the
base socket. If a SOCKS socket is wanted, use the createTrans-
portOfType() method instead and choose a type of “socks” for SOCKS 5.0

AppDevMozilla-16 Page 634 Thursday, December 4, 2003 6:38 PM

16.2 General-Purpose Scripting 635

or “socks4” for SOCKS 4.0. A UNIX (IPC) socket can be created by specifying
a type of “ipc”. The final transport object thus created can be used as a socket
or as any transport object can.

SOCKS-enabled sockets use digital encryption and can be created only if
correct encryption modules and keys are installed and enabled via the prefer-
ences. These items are installed and enabled by default in the user profile of
the Classic Browser and the Mozilla Browser.

The Mozilla Platform has a number of other socket-related interfaces,
but none of them is available from JavaScript. When looking through socket
XPIDL files, remember to check for [noscript] before the interface name’s
declaration. Such interfaces are not available to JavaScript.

Listing 16.4 is a simple Perl program that can be used as a test server for
socket connections. It reads from all connecting clients and prints what it gets
to stdout. It does not support SOCKS, nor does it write data back to the
socket client.

Listing 16.4 Socket server implementation for testing.
use IO::Socket;

my ($server, $client, $host);

$server = IO::Socket::INET->new(
 Proto => 'tcp', LocalPort => 80, Listen => SOMAXCONN, Reuse => 1);

while ($server && ($client = $server->accept()))
{
 while (<$client>) { print; }
 close $client;
}

In order to work, this program also requires correct port setup at the
operating system level.

16.2.7.3 How to Create an FTP Session The Mozilla Platform does not
directly support a whole FTP session. Each URL request made via an
nsIChannel object is a standalone operation. This means that each FTP ses-
sion consists of at most four FTP commands. In pseudo-code, these are

open {hostname and port}
cd {directory}
dir OR get {file}
close

This FTP session is handled inside Mozilla. The FTP session information
is not available to the application programmer, and the application program-
mer can’t submit individual FTP commands. This means that the way to con-
duct an FTP session is to use a URL request that happens to be an ftp: URL.
See “Downloading Files” and “Channels” for detailed instructions.

AppDevMozilla-16 Page 635 Thursday, December 4, 2003 6:38 PM

636 XPCOM Objects Chap. 16

If the application code needs to walk through the FTP hierarchy of an
FTP site, then there is still a way to do that. An FTP URL can represent an
FTP directory rather than a single file. If that URL is submitted from the plat-
form, the directory listing is returned, but it is converted to an HTML docu-
ment. This returned document can be walked through to discover files and
subdirectories in the original URL directory. Those files can then be retrieved
in turn.

To upload (put) a file to an FTP server, the same environment applies.
The FTP session is hidden behind a URL. See “Uploading and Posting Files”
for how to do this.

If all else fails, two sockets can be set up from JavaScript that implement
the FTP protocol directly. If this is done, care needs to be taken to ensure that
performance is adequate. This approach is probably as much work as creating
a new XPCOM component for FTP in C/C++.

16.2.8 Processes and Threads

Your task may not require a whole thread or process. It may only need to be
scheduled as an event on an event queue. If that is the case, see Chapter 6,
Events. For larger tasks, read on.

The simplest way to run a separate program is to hand a file to the desk-
top of the operating system and ask the desktop to activate that file as though
it were invoked (usually double-clicked) by the user. Start by using this
XPCOM pair to create a file object:

@mozilla.org/file/local;1 nsILocalFile

Associate the resulting object with a real file (see “File System Directory”
for how) and then call the launch() method. On UNIX, launch() is handled
by the GNOME desktop, not by the PATH environment variable. There is no
way to shut down that launched application from Mozilla.

More generally, processes can be launched from the platform using this
pair of XPCOM objects:

@mozilla.org/process/util;1 nsIProcess

Be aware that this interface is not yet fully implemented on all platforms. To
use it successfully, proceed as follows. As before, create an nsILocalFile
object associated with the required executable. Because processes are gener-
ally operating system–dependent, the non-portable initWithPath() method
may be used. Pass that object to the nsIProcess init() method, and then
call run() to create the process. That last step requires a method invocation
like this:

var blocking = true;
var argv = ["arg1","arg2"];
var result = {};
nsIProcess_object.run(blocking, argv, argv.length, result);

AppDevMozilla-16 Page 636 Thursday, December 4, 2003 6:38 PM

16.2 General-Purpose Scripting 637

The result object is required by the run() method; it receives a value
property that is set to 0 (zero) if the process starts successfully. If blocking is
set to true, then Mozilla will freeze while the process runs. In that case, win-
dows will not be updated for any reason until the process ends. If set to false,
Mozilla continues processing. In either case, when the process finishes, the
exitValue property on the nsIProcess object will be set. Some testing is
required to match the exitValue value to normal exit values returned by the
operating system.

Threads are a more difficult matter than processes. To an application
programmer, a thread is no more than a piece of code scheduled with win-
dow.setTimeout(). Although this creates the illusion of a second flow of con-
trol, in fact the scheduled code is queued up until the current flow of control
(the current piece of script) ends. No script is ever started until the existing
running script is complete.

Matters are like this because of the way the JavaScript interpreter (Spi-
derMonkey) is connected to Mozilla. Deep inside, the platform does support
threads. Its XPCOM system has a threading system that is a simplification of
Microsoft COM’s threading system. This system is used in a number of places;
most obviously to manage FTP connections, which require the separate moni-
toring of two connections. The JavaScript interpreter is embedded in Mozilla
using just one of these threads. While the interpreter is built to handle multi-
ple running instances, its use in the Mozilla Platform does not take advantage
of that feature.

Even though true threads are not available in JavaScript, interfaces do
exist for working with threads. They provide a neater way to organize chunks
of code than setTimeout() and setInterval() provide. Listing 16.5 shows
the steps required to create a thread:

Listing 16.5 Simple thread creation code.
var Cct = Components.classes["@mozilla.org/thread;1"];
var Cit = Components.interfaces.nsIThread;

var thread = { Run : function ()
 { alert(this.foo+" thread underway"); }
 foo : "bar"
 };

var mgr = Cct.createInstance(Cit);

mgr.init(code, 0, Cit.PRIORITY_NORMAL, Cit.SCOPE_GLOBAL,
Cit.STATE_JOINABLE);

mgr.join();
alert("thread created");

The code object supports the nsIRunnable interface and contains the code
to run (the Run() method) and any other properties that might be useful to that

AppDevMozilla-16 Page 637 Thursday, December 4, 2003 6:38 PM

638 XPCOM Objects Chap. 16

code. The thread object holds the implementation of the thread, which includes
the code and some data. The mgr (manager) object holds the thread’s configu-
ration and state. The join() method tells the platform threading system that
this thread should be scheduled to run—or to continue running if it was previ-
ously interrupted. Such an interruption is not possible if the thread is written in
JavaScript. join() is not equivalent to eval()—the thread is put on a queue
that the JavaScript interpreter will get to eventually. Because the interpreter is
single-threaded and not interruptible by other threads, the alert() in the last
line of code will always appear before the joined thread’s alert.

There is no race condition in this arrangement—the current script must
finish before anything else can run. This single-threaded arrangement means
that it is not possible to create blocking or infinite loop threads whose code is
written in JavaScript. Such threads may never end, and therefore no other
threads will ever run. The only value, then, of using such a system from Java-
Script is as a modeling strategy that collects code into handy thread objects or
that works with non-JavaScript XPCOM objects that also have the nsIRun-
nable interface.

A JavaScript script can create genuine threads by interacting with Java.
Such threads are pure Java threads only.

16.3 DATA TRANSFER

This topic describes the general-purpose structures used to read, write, and
process content inside the platform. It picks up where locating files and folders
left off. RDF fact processing is also covered, but parsing of XML documents is
left to “Web Scripting.”

16.3.1 Content Processing Concepts

A major task of the back half of Mozilla is to process content and data. To do this,
the platform must have systems that can transfer data and content from place to
place. Mozilla has many content and data processing concepts to pick from.

Chapter 6, Events, describes the concepts of listeners, observers, and broad-
casters. Those concepts are event oriented and are used only for tiny pieces of
information. They are not sufficient for a content-oriented system, although such
a system might work better if observers or listeners are added. A content-ori-
ented system must transfer information as large as a document in size.

Mozilla’s content-processing concepts are files, folders, streams, sessions,
channels, transports, sources (data sources), and sinks.

Files and folders are concepts common to all operating systems and are
discussed in “General-Purpose Scripting.”

A stream is Mozilla’s lowest level way to transfer data. A stream works
on a series of bytes, octets, or characters, just like a C++ or Java stream does,
or like redirection (>) in a UNIX or DOS shell. Streams can be read or written,

AppDevMozilla-16 Page 638 Thursday, December 4, 2003 6:38 PM

16.3 Data Transfer 639

depending on their source and destination. Mozilla also supports Unicode
streams, where the fundamental character is a two-byte “wide character”
rather than a one-byte “extended ASCII” character.

A session is a set of configuration information about a process, task, or
activity that is underway. This configuration information is used by the pro-
cess itself, although it sometimes receives events. It, however, is not the actual
process at work; it is an onlooker, a specifier, and a controller.

An example session is an FTP file transfer. The FTP domain name, user
name, password, and socket connection are part of the FTP session informa-
tion. The actual transfer of the file data is done by some other piece of soft-
ware. The session merely says who, what, where, and when. A session can also
be used outside of the networking domain—a Mozilla drag-and-drop mouse
gesture has a session object that tracks the progress of the gesture. Sessions
are used in a number of places in Mozilla.

A channel is the piece of platform architecture that actually performs
data transfer. A channel is a sophisticated version of a buffer. In Mozilla, chan-
nels are used mostly for retrieving documents that have a URL. Channels
sometimes have extensive functionality, but their basic task is fairly simple:
They make available a flow of raw data that originates elsewhere, such as
behind a Web server. The data transfer might consist of actually copying data,
or it might be a conceptual transfer in which the data, once available in form
A, is now available in form B. A channel has a management role—actual read
and write of data to the channel is usually handed off to a stream.

A transport is a piece of networking. While a channel provides a high-
level concept for data transfer, a transport does all the leg work by implement-
ing or using a specific network protocol like SMTP or socket-based TCP/IP.

Sources and sinks are treated separately next.

16.3.1.1 Sources and Sinks Source and sinks are important concepts in
Mozilla. They are used mostly for the wholesale processing of XML documents.
They are the highest level information flow concepts in Mozilla and usually do
content-specific processing.

Sources and sinks are also a general design concept in both science and
engineering. Many programmers are introduced to sources and sinks when
dataflow diagrams are taught. In dataflow diagrams (and in an ordinary
kitchen sink), it is generally understood that data or content (or water) starts
at the source (the tap) and ends at the sink (the drain hole). That, however, is
just a matter of perspective. That example can be turned inside out.

If you are responsible for the kitchen sink itself, then matters are
arranged in the standard way. You can see water leaving the tap (the source)
and entering the drain hole (the sink).

If you are responsible for guiding the water from the tap to the drain
hole, then matters are inside out. The first thing you do is collect the water
from the tap into some intermediate place, like a jug. The jug is then a sink.
The last thing you do is pour the water out from that intermediate place into

AppDevMozilla-16 Page 639 Thursday, December 4, 2003 6:38 PM

640 XPCOM Objects Chap. 16

the drain hole. The jug is then a source. In this example, your data-transfer
system starts with a sink and ends with a source, not the other way around.

This second perspective is relevant to Mozilla. Inside the platform, a sink
is used to suck up the content of a document into main memory. If any of the
content needs to be extracted, then a source is used to get it out.

No matter which way sources and sinks are arranged, in producer-
consumer terms, a source is always a producer, and a sink is always a con-
sumer. From the application programmer’s perspective, if the document con-
tent is not yet available (perhaps because it is stored in an external file), then
a sink must be set up first to load that content. A source is set up second, to
retrieve the loaded content for application use. The application programmer’s
job is to set up the water flow. In some cases, the document is automatically
loaded. In that case, only a source is required.

This type of arrangement has one complexity. Documents can be modi-
fied. Sinks are generally used for the initial loading of data, and so they pro-
cess data one way. This means that it is up to a source to manage changes.
Therefore, sources not only retrieve the document’s content but generally can
modify it as well.

Mozilla does not provide a general-purpose sink or source interface.
There are only specialist interfaces for particular kinds of data. Mozilla’s
interfaces allow more than one sink or source to operate on an in-memory doc-
ument at the same time.

16.3.1.2 Specialized Sources and Sinks Sources and sinks operate as con-
tent processors and are high-level concepts. Mozilla’s sources and sinks are all
specialized to a particular purpose.

Data sources are used to process RDF content. Instead of working with
tags, parser tokens, or DOM objects, data sources work with RDF facts. The
template system of XUL uses RDF data sources extensively, and these tem-
plates and sources can be manipulated with scripts. There are no RDF fact
sinks, only fact sources. These fact sources (data sources) can also perform
insert, update, and delete operations on the fact store that holds the retrieved-
to-memory RDF document. Some of Mozilla’s data sources, called internal
data sources, draw their content directly from the platform, rather than from
an external RDF document. The origins of the facts in this case are usually
data structures inside the platform, or the user’s bookmark file.

A parser is another kind of sink. It takes a flow of content, usually origi-
nating in a document, and transforms it into a data structure. An example is a
parser that reads XML and creates a DOM tree. Mozilla includes parsers for
all applications of XML that it understands.

A serializer is a source that is the inverse of a parser. It turns a data
structure into a stream of flat content, typically an XML document.

16.3.1.3 Content Processing Architecture All the data processing concepts
discussed here fit together into an informal set of layers, although this layer-

AppDevMozilla-16 Page 640 Thursday, December 4, 2003 6:38 PM

16.3 Data Transfer 641

ing is not as structured as a network protocol stack. Figure 16.1 illustrates
these layered relationships.

Figure 16.1 is a conceptual diagram and does not show strict object rela-
tionships. It is, however, close to some specific object relationships inside the
platform. We can see that channels and transports are closely connected, but
not so closely connected that they can’t be used separately. Input and output
streams expose the data or content processed to the rest of the platform. Two
typically large chunks of processing are the sources and sinks that contain
parsers, serializers, and other transformation tools. RDF data sources are
somewhat separate from the other concepts because they are very high level
and work only on content already broken down into facts. All these concepts
support listeners and observers; URLs and files are used to configure the
lower levels of processing.

Not shown in Figure 16.1 are the many other interfaces provided by
these central concepts, or the many other interactions that occur with the rest
of the platform.

16.3.2 Streams

When a file or other information source is available, a stream must be created
before that file’s contents can be worked on. Streams are central to data pro-
cessing in Mozilla, and there are a large number of stream-oriented interfaces
available. These interfaces include stream creators, loaders, converters, and

RDF
Data Source

Source

InputStream OutputStreamURL

File

Folder

To the rest of
the platform

Listeners

Internal Data Structures

Sink

Observers

Channel

Transport

Fig. 16.1 Layered structure of content processing concepts.

AppDevMozilla-16 Page 641 Thursday, December 4, 2003 6:38 PM

642 XPCOM Objects Chap. 16

managers. Several specialized streams also exist such as random-access and
string-based streams. There is a stream interface available for all common
tasks—just look for any interface with Stream in its name.

To illustrate this flexibility, Listing 16.6 shows four methods of creating a
stream. This stream is used to read a local file that is a sequence of bytes.

Listing 16.6 Stream creation by several methods.
var Cc = Components.classes;
var Ci = Components.interfaces;
var mode_bits = 0x01; // from nsIFileChannel
var perm_bits = 0; // from Unix/Posix open(2)
var file_bits = 0; // from nsIFileInputStream

var stream;
var file = ... // same as Listing 16-3 or 16-2

// [1] Created directly

stream = Cc["@mozilla.org/network/file-input-stream;1"];
stream = stream.createInstance(Ci.nsIFileInputStream);
stream.init(file, mode_bits, perm_bits, file_bits);

// [2] Created from a transport

var trans = Cc["@mozilla.org/network/stream-transport-service;1"];
trans = trans.getService(Ci.nsIStreamTransportService);
trans = trans.createInputTransport(stream,0,-1,true);
var stream2 = trans.openInputStream(0,-1,0);

// [3] Created from a channel

var channel = Cc["@mozilla.org/network/local-file-channel;1"]
channel = channel.createInstance(Ci.nsIFileChannel);
channel.init(file, mode_bits, perm_bits);
stream = channel.open();

// In all cases, work on the stream from JavaScript

var s2 = Cc["@mozilla.org/scriptableinputstream;1"];
s2 = s2.createInstance(Ci.nsIScriptableInputStream);
s2.init(stream);

var bytes = 100;
var content = null;
content = s2.read(bytes);

In all three cases, the nsILocalFile object created earlier is passed in
as an initialization argument at some point.

☞ Example 1. The file is read and written directly using a stream. The
stream interacts with the file synchronously unless special arrangements
are made.

AppDevMozilla-16 Page 642 Thursday, December 4, 2003 6:38 PM

16.3 Data Transfer 643

☞ Example 2. This example is a little odd because it both starts and ends
with a stream. The transport object must be based on something, and in
the absence of a network protocol, a stream is the only other alternative.
That underlying protocol is used to retrieve the file’s content. The stream
handed back by the transport to variable stream 2 is different from the
stream supplied. The handed-back stream will generally have data avail-
able on demand because the transport does work to collect the received
data ready for the next user request. By comparison, example 1 does
work only when the user makes a request. The transport will also close
down the “connection” to the file automatically when no more data are
available.

☞ Example 3. A channel allows the file to be retrieved without any
assumptions about the retrieval mechanism.

Finally, streams cannot be read or written from JavaScript automati-
cally. This is a piece of design intended to keep streams efficient. Instead, the
stream object must be wrapped up in a special object that supplies read/write
operations. That is the point of the last few lines, which also read at most the
first 100 bytes of the supplied file, less if the file is short.

Examples 1 and 2 can be used to perform file writing instead of reading
with only small coding changes. Example 3 cannot be rewritten because chan-
nels work only one way. When writing content, the default output is single-
byte characters. Any content supplied as UTF16 Unicode strings (like Java-
Script strings) is truncated character by character down to the least signifi-
cant byte. This means that default file output is single-byte extended ASCII.
To output Unicode (usually in a UTF8 encoding), content conversion is
required. That is discussed next. (see “Stream Content Conversion.”)

16.3.2.1 Stream Content Conversion All character strings are represented
as Unicode inside the platform. Plain files may be read as raw binary data
(use nsIBinaryInputStream), as 8-bit character data (the default for plain
files), or as correctly encoded Unicode. The last option occurs when XML files
are identified and parsed into DOM hierarchies, when a stream of data origi-
nates from a source that supplies format information such as HTTP or MIME,
or when DTD files are read.

To convert the content produced by a stream, this XPCOM pair will do
the job:

@mozilla.org/intl/scriptableunicodeconverter;1
nsIScriptableUnicodeConverter

Mozilla also supports many components with Contract IDs of this form:

@mozilla.org/streamconv;1?from={mime1}to={mime2}

mime1 and mime2 are MIME types. These components support the nsIS-
treamConverter interface. Such an object reads a given input stream and

AppDevMozilla-16 Page 643 Thursday, December 4, 2003 6:38 PM

644 XPCOM Objects Chap. 16

converts its content. It makes available a new input stream that the converted
content can be read from. Table 16.6 lists the conversions that the platform
supplies. Such a converter can also be implemented in pure JavaScript.

The XPIDL description for nsIStreamConverter explains how such a
conversion can be done with two nsIStreamListener objects instead of
whole stream objects. This approach allows converters to work on any kind of
stream, not just input streams.

16.3.3 Transports

Transport layer XPCOM objects are responsible for transferring content from
inside the Mozilla Platform to outside it, and vice versa. Transports are there-
fore more general than streams, which are restricted to the platform and to
the local disk. Where streams generally provide data synchronously and
directly from a given source, transports can provide data both asynchronously
and synchronously, from anywhere. Transports may also handle and buffer up
data between user requests.

The currently available transport layers are shown in Table 16.7.

Table 16.6 Stream conversions supported by Mozilla

Original MIME type Converted MIME type

application/http-index-format text/html

application/mac-binhex40 */*

application/x-unknown-content-type */*

compress uncompressed content

deflate uncompressed content

gzip uncompressed content

message/rfc822 application/vnd.mozilla.xul+xml

message/rfc822 */*

message/rfc822 text/html

multipart/byteranges */*

multipart/mixed */*

text/ftp-dir application/http-index-format

text/gopher-dir application/http-index-format

text/plain text/html

x-compress uncompressed content

x-gzip uncompressed content

AppDevMozilla-16 Page 644 Thursday, December 4, 2003 6:38 PM

16.3 Data Transfer 645

The five transports in Table 16.7 are responsible for: all streams, includ-
ing local files; domain sockets; the browser cache; an HTTP transport binding
for SOAP requests; and a secure (SSL-based) HTTP transport binding for
SOAP requests.

The stream-transport-service implementation is fairly new (since
1.3) and replaces the no longer available file-transport-service. Be
aware that some examples of code may use that older object.

16.3.4 Channels

A channel is a read-only mechanism for getting the content of a URL.
Although a channel can work with file objects, it is more natural for a channel
to use a URL. Channels are responsible for much of the content-specific work
that Mozilla does when retrieving a document. The sole exception to the read-
only rule is an upload channel, which is used for submitting forms, uploading
files, and publishing Web pages.

In the normal programming case, channels are handled indirectly. Like
nsIFile objects and streams, it is far more common for a channel to be cre-
ated for you than to create one explicitly yourself. Just as a file and a stream
are a closely associated pair of objects, so too are a URL and a channel. This
analogy is not perfect. A difference is that while streams can be created
directly, channels rarely are because channels are mostly buried behind a pro-
tocol. A second difference is that a channel is an enhanced request (an nsIRe-
quest object), which in turn is an enhanced URL. So a channel and its URL
are not strictly separate objects.

Use of channels usually starts with this XPCOM pair:

@mozilla.org/network/io-service;1 nsIIOService

This component provides the nsIIOService interface via getService(). As
for transports, this interface is effectively a name service for URL schemes.
Recall that a URL scheme is the characters before the first colon in a fully
quoted URL. This component takes scheme names and returns software
objects. The nsIIOService interface is therefore the fundamental jumping
off point for retrieving the content of a URL.

Table 16.7 Supported XPCOM transport layers

Implementation Interface

@mozilla.org/network/stream-transport-service;1 nsIStreamTransportService

@mozilla.org/network/socket-transport-service;1 nsISocketTransportService

@mozilla.org/network/storage-transport;1 nsITransport

@mozilla.org/xmlextras/soap/transport;1?protocol=http nsISOAPTransport

@mozilla.org/xmlextras/soap/transport;1?protocol=https nsISOAPTransport

AppDevMozilla-16 Page 645 Thursday, December 4, 2003 6:38 PM

646 XPCOM Objects Chap. 16

The nsIIOService interface can create new URI objects (with nsIURI
or nsIURL interfaces). These objects describe a given URL just as nsIFile
objects describe a file. These interfaces also expose the protocol handler objects
for a given scheme or URL. Those protocol handler objects implement chan-
nels. Each protocol handler supports one type of channel; some support more
than one type. After a URL object is constructed, either from user input or
from a plain JavaScript string, it can be used to find the protocol handler for
that URL, and from that found handler a useful channel object can be
obtained. The short way to do all this is just to call newChannelFromURI().

When the channel object is available, it can produce a stream object and
start the required processing. The stream object is used to deal with the
retrieved content. The nsIIOService interface has a number of convenience
methods so that it is easy to ignore the protocol handler entirely.

Channels do a great deal of processing on behalf of the URL requestor—
they locate and retrieve the resource; perform content conversion; and record
the MIME type and other configuration details. Table 16.8 lists the channels
provided by the platform.

From Table 16.8, most channels are associated with a URL scheme. All
channels support the nsIChannel core functionality, which consists primarily

Table 16.8 Supported XPCOM channels

Channel interface URL scheme and/or contract ID implementing

nsIChannel All the following entries

nsICachingChannel http:

nsIDataChannel data:

nsIEncodedChannel http:

nsIFileChannel file:

nsIFTPChannel ftp:

nsIHttpChannel http:

nsIImapMockChannel imap:

nsIInputStreamChannel @mozilla.org/network/input-stream-channel;1

nsIJarChannel jar:

nsIMultiPartChannel internal use only

nsIResumableChannel ftp: (http: not yet supported)

nsIUploadChannel file:, ftp:, http:

nsIViewSourceChannel view-source:

nsIWyciwygChannel wyciwyg: (not spelled ‘wysiwyg’)

AppDevMozilla-16 Page 646 Thursday, December 4, 2003 6:38 PM

16.3 Data Transfer 647

of the open() and asyncOpen() methods. Those methods yield stream or
stream listener objects. The other channel interfaces merely enhance the
channel object produced by nsIIOService with extra configuration informa-
tion. They do not represent fundamentally different channels—they are just
add-ons.

Table 16.8 presents a few unusual cases. The nsIUploadChannel is ori-
ented away from the desktop rather than toward it. It consumes an input
stream, rather than providing one, all in order to send the supplied content to
some server. The nsIResumableChannel is used for FTP downloads that are
interrupted. The Download Manager in the Classic Browser does not yet use
this functionality.

The second unusual case is that of trivial protocols. A channel need not
be associated with a complicated protocol like HTTP or FTP. It can be associ-
ated with any simple transfer task. The existing implemented channels sup-
port a trivial memory-to-disk transfer (plain file access) and an even more
trivial memory-to-memory transfer (which uses a stream object). Neither of
these trivial protocols needs to interact with URLs, and so their channel
objects can be manipulated directly by hand. That is the origin of the input-
stream-channel Contract ID that appears in Table 16.8.

Listing 16.6 has an example of the trivial memory-to-disk protocol at
work.

16.3.5 Data Sources

Data sources provide the fact-oriented support needed for XUL templates and
manipulation of RDF fact stores. The Mozilla Platform contains substantial
code that hooks data source objects up to such URIs. For manipulation of fact
stores, XPCOM interfaces are coded against directly, and again the platform
has substantial preexisting code that does this. The most obvious example is
the default builders and content views used to activate templates. Equivalent
or different support can be built by an application programmer using these
interfaces.

The concept of a data source is expressed by the nsIRDFDataSource
interface. This interface provides all the semantics of dealing with RDF facts.
About 20 XPCOM components implement this interface. The “Hands On” ses-
sion in this chapter has extensive examples of these interfaces at work. This
topic attempts to classify and identify those interfaces.

Individual facts can be constructed from simple XPCOM objects based in
the nsIRDFResource and nsIRDFLiteral interfaces. In general, a data
source is always readable and occasionally writable, providing simple query-
insert-update-delete functionality, sometimes called get-and-set. Unlike other
processing concepts, data sources operate on logical objects (facts) rather than
a stream of bytes or characters

Useful XPCOM data source interfaces fall into three categories:

AppDevMozilla-16 Page 647 Thursday, December 4, 2003 6:38 PM

648 XPCOM Objects Chap. 16

☞ Helper tools and utilities. These are needed just to make something
happen.

☞ Creative extensions. Some interfaces extend the functionality provided
by the basic nsIRDFDataSource interface in novel ways.

☞ Content support. Some aspects of data sources determine content—the
type and number of facts that can be accessed. This final category is
divided into ordinary and internal data sources. Ordinary data sources
draw facts from RDF files. Internal data sources draw facts from the
Mozilla Platform itself.

If the wrong data source from this final group is chosen, then hours, days,
or weeks can be spent wondering why nothing works. It is therefore important
to have good product knowledge on each kind of content support.

The nsIRDFDataSource makes poor use of the word source. In that
interface, source and target are used to mean fact subject and fact object,
respectively—for example, getSource(). Source is also used elsewhere in
Mozilla to mean source code. Don’t automatically assume that source means
data source.

16.3.5.1 Factory and Helper Objects If a XUL template is involved, then the
DOM objects for that template provide access to nsIRDFDataSource objects.
If no template exists, then a directly scripted use of data sources requires use
of factory objects right from the start. Table 16.9 lists the components used for
pure RDF manipulation:

In Table 16.9, the notation {arg} indicates that a number of alternatives
are possible. The easiest way to see them all is to list the contents of the win-
dow.Components.classes array. Table 16.9 is divided into four parts as fol-
lows.

The first part is the starting point for application use of RDF. The
nsIRDFService interface is used to create nsIRDFDataSource objects from
a URI, including a URL based on the rdf: scheme. Those URLs are listed in
Table 16.11. If an object for a fact subject, predicate, or object is required, it
can also be created from JavaScript strings using this interface. The nsIRDF-
Service interface’s object is accessible via getService(), not via cre-
ateInstance().

The second section of Table 16.9 provides factory interfaces for creating
and manipulating RDF containers. The two interfaces supplied provide
straightforward ways to create data structures consisting of RDF resource
objects. This section also includes the resource-factory components. When
a resource-factory component is used, the fact items created have extra
features. Depending on the argument chosen for name=, such a created object
might contain address book, email, news, or file information, in addition to the
basic subject, predicate, or object resource. This information, and its associ-
ated methods, follows the resource around as it is manipulated in the fact

AppDevMozilla-16 Page 648 Thursday, December 4, 2003 6:38 PM

16.3 Data Transfer 649

store. Only the components that relate to email are fully revealed by XPCOM;
the others are entirely unavailable to scripts. The ones that are revealed have
name= set to the following values:

imap mailbox news moz-abdirectory moz-abldapdirectory moz-
abmdbdirectory moz-aboutlookdirectory

The third section of Table 16.9 is only of use for directly parsing RDF doc-
uments. That is a deep customization of Mozilla and not particularly required
by ordinary applications. The reverse action, which is to generate an RDF doc-
ument from a fact store, is required for any application that intends to persist
the data it manipulates. None of these interfaces is used to manipulate facts.

Finally, the nsIRDFDelegateFactory item in Table 16.9 requires a
deep understanding of the platform architecture. It provides a way to attach a
side effect to the creation or destruction of a resource used in a fact. Using
such a delegate ties a fact to whatever system the delegate is designed for.

Table 16.9 XPCOM components specific to RDF

Component name Interfaces Purpose

@mozilla.org/rdf/rdf-service;1 nsIRDFService Starting point; creates nsIRD-
FDataSource data sources and
nsIRDFNode subjects, predi-
cates, and objects

@mozilla.org/rdf/container;1 nsIRDFContainer Creates a <Bag>, <Seq>, or
<Alt> tag object

@mozilla.org/rdf/container-
utils;1

nsIRDFContainerUtils Manipulates an RDF con-
tainer tag object

@mozilla.org/rdf/resource-
factory;1?name={arg}

various Creates objects representing
parts of a fact

@mozilla.org/rdf/content-sink;1 nsIExpatSink Turns RDF-based XML
objects into a fact store

@mozilla.org/rdf/xml-parser;1 nsIRDFXMLParser Turns an RDF document into
RDF-based XML objects

@mozilla.org/rdf/xml-serializer;1 nsIRDFXMLSerializer
nsIRDFXMLSource

Turns a fact store into an RDF
document

@mozilla.org/rdf/delegate-
factory;1?key={arg}&scheme=
{arg}

nsIRDFDelegateFactory Ties a resource (a fact item) to
a custom object that synchro-
nizes something else against
that resource

AppDevMozilla-16 Page 649 Thursday, December 4, 2003 6:38 PM

650 XPCOM Objects Chap. 16

This is like the tie function in Perl. A delegate is an observer for an individual
resource object. Use of that interface is beyond the scope of this book.

16.3.5.2 Structural Options Mozilla provides options that extend the func-
tionality of data sources. These options make data sources more flexible rather
than providing further access to their content. These options exist in the form
of XPCOM interfaces that add extra functionality to the fact store that holds
the data in the data source. Table 16.10 describes these interfaces.

The XUL template system not only uses composite data sources but also
supports a list of arguments supplied to the XUL attribute of the data sources.
A composite data source is no more than a container that holds other data
sources. It in turn implements the nsIRDFDataSource interface. Each
method of that interface just searches the contained data sources and calls the
same method on each one as required.

In-memory data sources are at the core of several of the more complex
data sources. Where the content of a fact store needs to be constructed by
hand, rather than sourced from some other place, an in-memory data source is
the logical starting point. Purging such a data source is just a way of resetting
it back to empty. Stopping propagation (preventing broadcast of changed facts)
slightly improves performance.

The nsIRDFRemoteDatasource interface provides a way to save and
load a fact store back to or from the place it originated. That place is typically
an RDF file or something equivalent. The file can be local or remote, but there
is very limited support in both cases. Save is implemented by the Flush()
method, and load, by the Refresh() method. Flush() is only supported on
file: URLs; Refresh() is only supported on file: and http: URLs.

16.3.5.3 Content Options Data sources are not all created equal. They differ
in content and in access to that content. These differences are the main reason
why data sources are hard to use. It is not obvious from an application pro-
grammer’s perspective which data sources can produce what facts or how
those facts might be retrieved. All data sources are based on XPCOM compo-
nents that follow this naming pattern:

@mozilla.org/rdf/datasource;1?name={arg}

Legal values for {arg} are listed in Table 16.12, leftmost column.
The content that a data source provides to the application programmer is

obvious only for ordinary RDF files. Those files can be read directly by eye,
which lays them completely open. Internal data sources, on the other hand,
cannot be viewed at all except by (a) using the data source, (b) studying the
platform source code, or (c) finding an example in the user’s profile. The book-
mark, history, search and local-store internal data sources all drop example
files in the user profile; the others do not. Even where there are example files,
those files generally aren’t RDF documents.

AppDevMozilla-16 Page 650 Thursday, December 4, 2003 6:38 PM

16.3 Data Transfer 651

Ta
b

le
 1

6.
10

In
te

rfa
ce

s
ex

te
nd

in
g

th
e

fe
at

ur
es

 o
f n
s
I
R
D
F
D
a
t
a
S
o
u
r
c
e

In
te

rf
ac

e
n

am
e

Im
p

le
m

en
te

d
 b

y
P

u
rp

os
e

n
sI

R
D

F
D

at
aS

ou
rc

e
A

ll
 d

at
a

so
u

rc
es

, b
u

t
se

e
T

ab
le

 1
6.

12
 f

or
 li

m
it

at
io

n
s

F
u

n
da

m
en

ta
l d

at
a

op
er

at
io

n
s

on
 t

h
e

da
ta

so

u
rc

e’
s

fa
ct

 s
to

re

n
sI

R
D

F
C

om
po

si
te

D
at

aS
ou

rc
e

@
m

oz
il

la
.o

rg
/r

df
/d

at
as

ou
rc

e;
1?

n
am

e=
co

m
po

si
te

-d
at

as
ou

rc
e

P
ro

vi
de

s
a

da
ta

 s
ou

rc
e

th
at

is

 a
 u

n
io

n
 o

f t
h

e
fa

ct
s

in
 o

n
e

or
 m

or
e

ot
h

er
 d

at
a

so
u

rc
es

;
in

se
rt

ed
 f

ac
ts

 g
o

in
to

 t
h

e
fi

rs
t

of
 t

h
os

e
ot

h
er

 d
at

a
so

u
rc

es

n
sI

R
D

F
In

M
em

or
yD

at
aS

ou
rc

e
@

m
oz

il
la

.o
rg

./r
df

/d
at

as
ou

rc
e;

1?
n

am
e=

in
-m

em
or

y-
da

ta
so

u
rc

e
P

ro
vi

de
s

a
da

ta
 s

ou
rc

e
ba

se
d

on
 a

 fa
ct

 s
to

re
 t

h
at

 is

in
de

pe
n

de
n

t
of

 a
ll

 o
th

er

fa
ct

s

n
sI

R
D

F
P

u
rg

ea
bl

eD
at

aS
ou

rc
e

@
m

oz
il

la
.o

rg
/r

df
/d

at
as

ou
rc

e;
1?

n
am

e=
in

-m
em

or
y-

da
ta

so
u

rc
e

A
ll

ow
s

a
da

ta
 s

ou
rc

e
to

 b
e

em
pt

ie
d

of
 f

ac
ts

n
sI

R
D

F
P

ro
pa

ga
ta

bl
eD

at
aS

ou
rc

e
@

m
oz

il
la

.o
rg

/r
df

/d
at

as
ou

rc
e;

1?
n

am
e=

in
-m

em
or

y-
da

ta
so

u
rc

e
@

m
oz

il
la

.o
rg

/b
ro

w
se

r/
bo

ok
m

ar
ks

-s
er

vi
ce

;1
@

m
oz

il
la

.o
rg

/r
df

/d
at

as
ou

rc
e;

1?
n

am
e=

bo
ok

m
ar

ks

T
u

rn
s

on
 o

r
tu

rn
s

of
f

br
oa

dc
as

ti
n

g
of

 f
ac

t
ch

an
ge

s
to

 a
n

y
ob

se
rv

er
s

n
sI

R
D

F
R

em
ot

eD
at

aS
ou

rc
e

@
m

oz
il

la
.o

rg
/a

u
to

co
m

pl
et

eS
es

si
on

;1
?t

yp
e=

h
is

to
ry

@
m

oz
il

la
.o

rg
/b

ro
w

se
r/

bo
ok

m
ar

ks
-s

er
vi

ce
;1

@
m

oz
il

la
.o

rg
/b

ro
w

se
r/

gl
ob

al
-h

is
to

ry
;1

@
m

oz
il

la
.o

rg
/r

df
/d

at
as

ou
rc

e;
1?

n
am

e=
bo

ok
m

ar
ks

@
m

oz
il

la
.o

rg
/r

df
/d

at
as

ou
rc

e;
1?

n
am

e=
h

is
to

ry
@

m
oz

il
la

.o
rg

/r
df

/d
at

as
ou

rc
e;

1?
n

am
e=

xm
l-

da
ta

so
u

rc
e

P
ro

vi
de

s
a

w
ay

 t
o

co
or

di
n

at
e

th
e

fa
ct

 s
to

re
 o

f
a

da
ta

 s
ou

rc
e

ag
ai

n
st

 t
h

e
or

ig
in

al
 s

ou
rc

e
of

 t
h

e
fa

ct
s.

T
h

e
X

M
L

 d
at

a
so

u
rc

e
co

n
tr

ac
t I

D
 is

 fo
r

pl
ai

n
 R

D
F

fi

le
s

AppDevMozilla-16 Page 651 Thursday, December 4, 2003 6:38 PM

652 XPCOM Objects Chap. 16

This anonymity of content is a big problem for XUL templates and
scripts that try to navigate an internal data source. In both cases, the struc-
ture of the data source needs to be known beforehand. Fortunately, such inter-
nal data sources are needed for a narrow class of uses only.

The “Debug Corner” in this chapter has some code that reveals a data
source’s content. Table 16.11 lists the top-most fact subject and common predi-
cates for most of the internal data sources. The special value rdf:null stands
for no data source at all. It does not stand for an empty data source.

Beyond content, many of Mozilla’s data sources have limited or restricted
functionality. This means that even if you know what the content of the data
source is, the data source object may not have enough implementation to make
that content accessible. This means that even though an XPCOM component
may state that it supports the nsIRDFDataSource interface, in truth many of
the methods in that interface may simply return with an error or exception,
without doing anything. Such data source objects are yet to be finished.

Table 16.12 indicates the level of support that is available for each of the
implemented data sources. Table 16.12 is based on Mozilla version 1.4 and
should be used as an indication only of the available functionality. Less-well-
known data sources require obscure preparation steps before they are useful.
Such steps are not yet covered here.

Data sources that do not have an rdf: URI cannot be used in XUL tem-
plates using XML attributes. They may still be attached to a template with a
script. Data sources that are not registered with XPCOM in the default build
of the platform cannot be used from XUL or JavaScript at all. The compos-
ite-datasource can only be asserted into if one of its collected data sources
can be inserted into. It is recommended that you work with the individual
data source directly, rather than work indirectly through the composite data
source’s interface.

16.4 WEB SCRIPTING

Web browsers perform tasks that operate in an environment different from
traditional 3GL programs. On the Web, there is no such thing as a file or a file
name. Instead, there are URLs and the documents that represent those URL
resources. Frequently, such documents have complex structure and are XML-
based. Such an environment requires a different scripting approach to that
described under “Files and Folders” and under “Streams.”

Web browsers are also actors in the emerging Web protocols stack,
which could be better identified as the XML protocol stack. This stack, a set
of standards, uses HTTP (or another protocol) as the first step in a series of
application-enabling and application-specific sets of protocols. The XML pro-
tocol stack provides a data-oriented transaction system, rather than the sim-
ple document request and response-with-retrieval system that Web surfing
requires.

AppDevMozilla-16 Page 652 Thursday, December 4, 2003 6:38 PM

16.4 Web Scripting 653

Ta
b

le
 1

6.
11

S
ta

rt
in

g
po

in
ts

 fo
r

in
te

rn
al

 d
at

a
so

ur
ce

s

rd
f:

 U
R

I
T

op
m

os
t

U
R

N
 /

U
R

I
P

re
d

ic
at

es
 u

se
d

 t
o

co
n

ta
in

 f
ac

ts

rd
f:

ad
dr

es
sd

ir
ec

to
ry

m
oz

-a
bd

ir
ec

to
ry

://
h

tt
p:

//h
om

e.
n

et
sc

ap
e.

co
m

/N
C

-r
df

#c
h

il
d

an
d

h
tt

p:
//h

om
e.

n
et

sc
ap

e.
co

m
/N

C
-r

df
#C

ar
dC

h
il

d

rd
f:

bo
ok

m
ar

ks
N

C
:B

oo
km

ar
ks

R
oo

t
N

C
:P

er
so

n
al

T
oo

lb
ar

F
ol

de
r

U
se

s
R

D
F

 c
on

ta
in

er
s

rd
f:

ch
ar

se
t-

m
en

u
M

an
y

(e
.g

.,
N

C
:B

ro
w

se
rC

h
ar

se
tM

en
u

R
oo

t)
U

se
s

R
D

F
 c

on
ta

in
er

s

rd
f:

fi
le

s
N

C
:F

il
es

R
oo

t
h

tt
p:

//h
om

e.
n

et
sc

ap
e.

co
m

/N
C

-r
df

#c
h

il
d

rd
f:

h
is

to
ry

N
C

:H
is

to
ry

R
oo

t
N

C
:H

is
to

ry
B

yD
at

e
h

tt
p:

//h
om

e.
n

et
sc

ap
e.

co
m

/N
C

-r
df

#c
h

il
d

rd
f:

h
tt

pi
n

de
x

U
R

L
 o

f
in

de
x

rd
f:

in
te

rn
et

se
ar

ch
N

C
:S

ea
rc

h
E

n
gi

n
eR

oo
t

N
C

:L
as

tS
ea

rc
h

R
oo

t
N

C
:S

ea
rc

h
R

es
u

lt
sS

it
es

R
oo

t
N

C
:F

il
te

rS
ea

rc
h

U
rl

R
oo

t
N

C
:F

il
te

rS
ea

rc
h

S
it

es
R

oo
t

S
ea

rc
h

C
at

eg
or

yR
oo

t
L

as
tS

ea
rc

h
M

od
e

h
tt

p:
//h

om
e.

n
et

sc
ap

e.
co

m
/N

C
-r

df
#c

h
il

d

rd
f:

is
pd

ef
au

lt
s

rd
f:

lo
ca

l-
st

or
e

N
on

e;
 u

se
 a

n
y

U
R

I
N

o
co

n
ta

in
er

s;
 e

ac
h

 U
R

I
h

as
 a

 s
et

 o
f

pr
op

er
ti

es
 o

n
ly

rd
f:

lo
ca

ls
ea

rc
h

E
ve

ry
 fi

n
d:

 U
R

I
is

 a
 r

oo
t

N
o

co
n

ta
in

er
s;

 e
ac

h
 U

R
I

h
as

 a
 s

et
 o

f
pr

op
er

ti
es

 o
n

ly

rd
f:

m
ai

ln
ew

sf
ol

de
rs

N
o

ro
ot

; u
se

 s
er

ve
r

U
R

L
s

h
tt

p:
//h

om
e.

n
et

sc
ap

e.
co

m
/N

C
-r

df
#c

h
il

d

rd
f:

m
sg

ac
co

u
n

tm
an

ag
er

m
sg

ac
co

u
n

ts
:/

rd
f:

m
sg

fi
lt

er
s

N
o

ro
ot

; u
se

 s
er

ve
r

U
R

L
s

rd
f:

sm
tp

N
C

:s
m

tp
se

rv
er

s
h

tt
p:

//h
om

e.
n

et
sc

ap
e.

co
m

/N
C

-r
df

#c
h

il
d

rd
f:

su
bs

cr
ib

e
N

o
ro

ot
; u

se
 s

er
ve

r
U

R
L

s
h

tt
p:

//h
om

e.
n

et
sc

ap
e.

co
m

/N
C

-r
df

#c
h

il
d

rd
f:

w
in

do
w

-m
ed

ia
to

r
N

C
:W

in
do

w
M

ed
ia

to
rR

oo
t

U
se

s
R

D
F

 c
on

ta
in

er
s

AppDevMozilla-16 Page 653 Thursday, December 4, 2003 6:38 PM

654 XPCOM Objects Chap. 16

Table 16.12 nsIRDFDataSource interface support for each data source

Name used in
Contract ID H

as
 r

d
f:

U

R
I?

R
eg

is
te

re
d

 w
it

h

X
P

C
O

M
 i

n
 t

h
e

d
ef

au
lt

 b
u

il
d

?

C
on

te
n

t-
sp

ec
ifi

c
X

P
C

O
M

 i
n

te
rf

ac
es

?

S
u

p
p

or
ts

as

se
rt

()
?

S
u

p
p

or
ts

A

rc
L

ab
el

sO
u

t(
)?

S
u

p
p

or
ts

G

et
A

ll
R

es
ou

rc
es

()
 ?

S
u

p
p

or
ts

co

m
m

an
d

s?

addressdirectory ✓ ✓ ✓ ✓ ✓ ✓

bookmarks ✓ ✓ ✓ ✓ ✓ ✓

charset-menu ✓ ✓ ✓ ✓ ✓ ✓

files ✓ ✓ ✓

history ✓ ✓ ✓ ✓ ✓

httpindex ✓ ✓ ✓ ✓ ✓ ✓ ✓

internetsearch ✓ ✓ ✓ ✓ ✓

ispdefaults ✓ ✓

local-store ✓ ✓ ✓ ✓ ✓

localsearch ✓ ✓ ✓

mailnewsfolder ✓ ✓ ✓ ✓ ✓ ✓

msgaccountmanager ✓ ✓ ✓ ✓

msgfilters ✓ ✓ ✓

smtp ✓ ✓ ✓

subscribe ✓ ✓ ✓ ✓

window-mediator ✓ ✓ ✓ ✓ ✓ ✓ ✓

chrome ✓ ✓ ✓ ✓

mailsounds ✓

registry ✓

relatedlinks ✓ ✓ ✓

in-memory-datasource ✓ ✓ ✓ ✓

composite-datasource ✓ maybe ✓ ✓

xml-datasource (RDF files) ✓ ✓ file: URLs
only

✓ ✓ ✓

AppDevMozilla-16 Page 654 Thursday, December 4, 2003 6:38 PM

16.4 Web Scripting 655

This emerging Web protocols stack consists of a set of standards and
standards-in-progress. From lowest to highest, the most central standards in
the stack follow:

☞ XML and XML Schema. These standards are used to define the under-
lying syntax of all the other standards. Mozilla implements XML and has
some XML Schema utilities.

☞ HTTP. This protocol can act as a “transport binding” that is used to send
and receive Web protocol stack messages. Mozilla implements HTTP.

☞ SOAP and XML-RPC. SOAP provides an XML-based format for mes-
sages. It adds timing, naming, identifying, data packaging, and message-
passing semantics to plain XML. It is to XML what traditional RPC
(Remote Procedure Calls) are to C/C++. There are two message formats
in the W3C SOAP specification: one that maps efficiently to traditional
RPC and one that is a “pure XML” format that uses XML schema types.
The former is sometimes called XML-RPC. Mozilla implements both
standards.

☞ WSDL. Built on top of SOAP, WSDL is a module packaging and defini-
tion language. Client software can exploit it to analyze and use SOAP-
based facilities provided by servers. Mozilla support for WSDL is avail-
able from version 1.4 onward.

☞ UDDI. UDDI is a protocol that provides a name-mapping service for Web
services, just as DNS provides a name-mapping service for TCP/IP
addresses. UDDI gives an XML client the capbility to dynamically dis-
cover Web services that it doesn’t yet know about. Mozilla does not imple-
ment UDDI, but UDDI is built on top of SOAP and so can be simulated at
the cost of extra programming effort.

☞ ebXML (enterprise business XML). Defined by the OASIS organiza-
tion (www.oasis-open.org) and the United Nations, ebXML adds business
transactions and business identification on top of SOAP. Mozilla does not
implement ebXML.

☞ Business process modeling standards. These standards are high-
level aggregation and specification standards intended to solve both gen-
eral and specific business intercommunication problems between soft-
ware applications. An example of the organizations developing these
standards are the Workflow Management Coalition and the Open Appli-
cation Group. Mozilla does not implement any of these standards.

Mozilla may not ever implement all these standards because some are
intended to be used business-to-business, rather than consumer-to-business.
The Web protocol stack is somewhat separate from the typical uses of Web
browsers—displaying HTML content and email messages. Instead of using a
channel, which is the standard way to work with URLs, these Web protocol
features have their own separate interfaces, which must be specially scripted.

AppDevMozilla-16 Page 655 Thursday, December 4, 2003 6:38 PM

656 XPCOM Objects Chap. 16

A Mozilla application might have no GUI at all. For example, it might be
based on the xpcshell tool. In that case, the application can exploit the
advanced XML support in the platform. It can implement servers that provide
and use Web protocol stack concepts. A simple example is a content router that
sends received XML documents to different destinations, depending on what
they contain.

16.4.1 URIs, URLs, and URNs

URIs, and the specialist subformats of URL and URN, are described in the
IETF’s RFC 2396. It is intended, or at least hoped, that URIs be media-
independent and highly portable. They therefore do not have the portability
problems that file and path names have. Instead, URIs (especially URLs) have
another problem: They are often badly typed, aliased, or carelessly shortened
by users.

In Mozilla, a URI can be represented as a plain JavaScript string without
loss of portability. If this string is to be usable with other XPIDL interfaces,
then it needs to be converted to an object. This XPCOM pair is the most funda-
mental object available:

@mozilla.org/network/simple-uri;1 nsIURI

URLs are a specific form of URI and have a specialist object available,
one that caters to all the common URL schemes, like http: and ftp:. This
XPCOM pair is a widely used example:

@mozilla.org/network/standard-url;1 nsIURL

This interface also supports nsIURI. In fact, most XPCOM components
with uri or url in their Contract ID support one or both of these interfaces.

If the user enters a URI, some validation may well be required. There are
several defenses against bad syntax. This XPCOM pair makes the broadest
attempt to fix a user-entered URI:

@mozilla.org/docshell/urifixup;1 nsIURIFixup

This interface has a method createFixupURI(), which can deal with key-
words entered as URIs and lazy shortened forms entered as www.test.com or
even test.com instead of http://www.test.com. Such a docshell component is
exposed as an AOM object in a Mozilla Browser window; that structure is dis-
cussed in Chapter 10, Windows and Panes, in “<iframe>.”

A second solution for syntax problems is to rely on this XPCOM pair:

@mozilla.org/network/url-parser;1?auth=maybe nsIURLParser

This interface will parse a URL according to RFC 2396, but in a lenient way so
that many small syntax mistakes are both accepted and corrected. The compo-
nent subspecifier can also be quoted as yes or no. In those cases, there are
slight variations on the parsing algorithm used.

AppDevMozilla-16 Page 656 Thursday, December 4, 2003 6:38 PM

16.4 Web Scripting 657

Finally, the base interface, nsIURI, supports a method named
resolve(). This method compares a supplied relative URI against the cur-
rent object’s URI and returns a fully resolved (unshortened) URI equivalent to
the relative one supplied.

There is no XPCOM object specifically for URNs.
The ultimate test of a URL’s correctness is, of course, to retrieve the

resource that it locates.

16.4.2 Downloading Files

To download a file or document from a remote location, you can use a channel,
a URI, and the resulting stream. That is the straightforward approach covered
under “Content Processing Concepts.” There is also a very high-level alterna-
tive, which is to use this XPCOM pair:

@mozilla.org/embedding/browser/nsWebBrowserPersist;1
nsIWebBrowserPersist

This interface accepts a URI or a DOM 1 Document interface and an nsILo-
calFile object. It performs the whole fetch-and-save operation with a single
method call.

To perform a download asynchronously so that other tasks can be
attended to during the download, create a content listener or observer object
in pure JavaScript. Most interfaces, like nsIChannel, describe which content
listeners and observers are supported. Each time a chunk of downloaded docu-
ment content appears in the listener or observer, you process it, save it, or
ignore it.

The most common way such a process-by-piece object is built is to imple-
ment the nsIWebProgressListener interface. Any object that supports the
nsIWebProgress interface can register such a listener (or more than one),
and many other interfaces accept such a listener object as an initialization
argument. There are existing XPCOM objects that implement this interface,
so for many applications the object you need to get the job done already exists.

To be advised of the progress of an asynchronous download, there are
numerous options. Receiving progress advice is in theory a problem separate
from that of receiving content. Advice is information about progress, whereas
received content is the result of that progress.

The most primitive advice option is to enhance an ordinary content lis-
tener so that progress is noted as each chunk of content arrives. This option
does not report completion or management events associated with content
delivery; it only reports forward progress.

A better tracking option is to create a pure JavaScript object with the
nsIProgressEventSink interface and to supply it to the object responsible
for the download. This sink (an event listener) reports all changes to the sta-
tus of the in-progress download. An alternative is to create a pure JavaScript
object with the nsIRequestObserver interface and lodge it with the channel

AppDevMozilla-16 Page 657 Thursday, December 4, 2003 6:38 PM

658 XPCOM Objects Chap. 16

or transport object. Such an observer only notices the beginning and ending of
the download, not cancellations or suspensions.

An even more sophisticated tracking approach is to use the XPCOM
objects responsible for the Mozilla Download Manager. These objects can be
used with or without the Download Manager dialog box, but if that dialog box
is employed, lots of scripting is required to tie it to the XPCOM objects prop-
erly. With or without a dialog box, this approach is limited to downloading files
to be saved to disk. Such a use starts with this XPCOM pair, which imple-
ments a service:

@mozilla.org/download-manager;1 nsIDownloadManager

This single object manages all downloads underway. The addDownload()
method of the manager is used to create and register a new object with the
nsIDownload interface for each file to be downloaded.

Through a subtle arrangement, each download object is responsible for
informing the Download Manager about progress because it records all the con-
figuration details of a single download operation. These details are specified in
the arguments passed to addDownload() and include a way of disposing of
(saving) the downloaded item—this is the final nsIWebBrowserPersist argu-
ment. If this argument exists, the download object keeps the Download Man-
ager informed of progress automatically, and the Download Manager uses the
download object to clean up if the download is canceled or otherwise inter-
rupted. If this final argument does not exist, then cleanup is up to the applica-
tion programmer. The need for cleanup can be detected by lodging an observer
on the individual download objects.

Mozilla also supports the concept of a load group. This is a variation on
the nsIRequest interface, which allows a collection of URIs to have group
identity. A load group is useful if a summary of the progress of a collection of
requests is needed.

16.4.3 File and MIME Types

The MIME type of a file, URI, or file extension can be found with this XPCOM
pair, which is a singleton service object:

@mozilla.org/mime;1 nsIMIMEService

This object consults the MIME information stored in the Mozilla user profile
first. If an answer is not available there, then the desktop’s operating system
is consulted. On UNIX, the type is determined by the GNOME desktop, not by
file(1).

The launch() method of nsILocalFile allows an executable to be run
or a data file to be loaded into its application software. This can be done with-
out the application programmer needing to know anything about the file’s
type.

AppDevMozilla-16 Page 658 Thursday, December 4, 2003 6:38 PM

16.4 Web Scripting 659

16.4.4 Uploading and Posting Files

Documents can be posted by means of the AOM XMLHttpRequest object. That
object is discussed in Chapter 7, Forms and Menus, in “Form Submission.” It is
based on this XPCOM pair:

@mozilla.org/xmlextras/xmlhttprequest;1 nsIJSXMLHttpRequest

Uploading of documents is equally easy, if not easier. Follow the approach
described in “Channels” in this chapter, specifying the destination of the
upload when using the nsIIOService interface. That destination will either
be a server-side program, in the case of an HTTP POST operation, or an FTP
directory, in the case of FTP. After the channel is created, use QueryInter-
face() to obtain the nsIUploadChannel interface and supply that interface
with an input stream containing the file contents to be sent. To send the con-
tent, obtain the nsIChannel interface again, and call open() or asyncO-
pen() as for any channel object.

16.4.5 Web Protocol Stack Objects

The basis of the Web protocol stack, HTTP, is widely used in Mozilla, and can
be scripted in many ways, including direct use of the XMLHttpRequest AOM
object. The other protocols supported by Mozilla require specific objects sepa-
rate from the rest of the platform.

A useful set of documentation on support for Web protocols is available at
www.mozilla.org/xmlextras/.

XML-RPC support is the simplest step up from HTTP. This XPCOM pair:

@mozilla.org/xml-rpc/client;1 nsIXmlRpcClient

is responsible for creating an XML fragment containing the RPC request, sub-
mitting it synchronously or asynchronously to the supplied URL over HTTP,
and reporting back results or faults. Faults appear as objects with the nsIXm-
lRpcFault interface.

In traditional RPC, a tool like rpcgen(1) is used to create C code that
does much of the work. That C code

☞ Maps native types to RPC portable types.
☞ Marshals nativeRPC calls into a portable XDR/NDR format “for the

wire.”
☞ Handles network communications and timing issues.
☞ Operates reasonably efficiently.

In Mozilla’s XML-RPC, JavaScript is an interpreted language, and the
platform is already compiled in most cases. The implementation details and
interface are therefore different from traditional RPC. The nsIXmlRpcClient
is responsible for marshaling JavaScript RPC calls into portable XML, but it

AppDevMozilla-16 Page 659 Thursday, December 4, 2003 6:38 PM

660 XPCOM Objects Chap. 16

delegates the sending and receiving of calls to a Mozilla channel object. This
means that timeouts need to be checked for on the channel. The supplied
interface delegates to the application programmer the mapping of JavaScript
to XML-RPC types. It provides factory methods for creating XML-RPC types,
but the application programmer needs to populate and assemble them for use
by the RPC request. Finally, the nsIXmlRpcClient is implemented in Java-
Script and regularly resolves names into objects using the window.Compo-
nents object, so it is not highly optimized for performance.

SOAP is the intended and popular replacement for XML-RPC. SOAP
technology is information-dense and requires a book of its own. The SOAP and
XML-P standards at the W3C are highly recommended reading. Only the
utter basics are presented here. XML-P (P stands for Protocol) is the future
name for SOAP, assuming the popularity of SOAP as an acronym can be over-
come.

A SOAP call is a request message followed by a response message, and so
HTTP is a natural transport for SOAP. Both messages are in XML format.
Both messages consist of an envelope tag that holds one optional header tag
and one mandatory body tag. These tags are defined by the SOAP standard.
The body tag contains a document fragment consisting of other tags. Those
other tags are defined by the application programmer, who should have gone
to the trouble of creating or using a formal XML schema definition for them.
Those tags are the data sent and received.

For a programmer to create a SOAP message, objects are needed for the
following tasks:

☞ To manipulate XML schema definitions
☞ To construct SOAP envelopes and their internal structure
☞ To set up a connection to a SOAP-enabled server
☞ To make the SOAP call
☞ To deal with any exceptions, faults, and failures
☞ To extract any returned XML document

Mozilla’s solution to each of these bullet points is an object based on the
matching XPCOM pair in this list:

☞ @mozilla.org/xmlextras/schemas/schemaloader;1 nsISchemaLoader
☞ @mozilla.org/xmlextras/soap/call;1 nsISOAPMessage
☞ @mozilla.org/xmlextras/soap/transport;1?protocol=http;

nsISOAPTransport
☞ @mozilla.org/xmlextras/soap/call;1 nsISOAPCall
☞ @mozilla.org/xmlextras/soap/fault;1 nsISOAPFault
☞ @mozilla.org/xmlextras/soap/response;1 nsISOAPMessage

AppDevMozilla-16 Page 660 Thursday, December 4, 2003 6:38 PM

16.4 Web Scripting 661

Many minor and ancillary interfaces assist this core set of features. On
top of all these things is the need to set up an HTTP and SOAP-enabled server
so that something can respond to the outgoing SOAP request.

The interface nsISOAPMessage is also exposed as an AOM object named
SOAPCall and can therefore be created very simply:

var soap_call = new SOAPCall();

The nsISOAPParameter interface is similarly reflected in the SOAPPa-
rameter AOM object. These two objects allow simple SOAP calls to be made
without extensive preparatory use of the window.Components array.

The famously available Google SOAP service is a genuine SOAP service
that can be used to test Mozilla clients that make SOAP calls. It is described
at www.google.com/apis/index. It is hard, however, to learn much when you
don’t control both the client and the server. A better solution is available in the
Mozilla source code. This Web-hosted portion of the source contains sample
code useful for learning and testing SOAP:

http://lxr.mozilla.org/seamonkey/source/extensions/xmlextras/tests/

If you have a Web server available with CGI support, then the three
small .cgi programs in this directory (written in Perl) can be used to receive
SOAP requests and respond in kind. The echo.cgi version implements a
“ping” operation, which by convention should be the first service implemented
when a group of related SOAP calls are defined. The other two .cgis provide
a success response and a failure response. The success response also contains
response content.

There is enough XPCOM SOAP support in Mozilla for the platform to act
as a SOAP server instead of a client, provided that the clients all use the same
transport (ultimately one socket or file descriptor). This means that the plat-
form cannot yet accept SOAP requests sent from anywhere in the world.

The final Web protocol stack protocol that Mozilla supports is the WSDL
protocol, or Web Services Description Language. It bundles together a set of
individual SOAP calls into a single definition document. Very roughly speak-
ing, it is the XML equivalent of a CORBA IDL file or a Mozilla XPIDL file.
WSDL definitions are the responsibility of the application programmer.

WSDL in Mozilla is brand new as this is written. The best place to look
for up-to-the-minute information is this URL, which contains the XPIDL defi-
nitions for WSDL interfaces:

http://lxr.mozilla.org/seamonkey/source/extensions/xmlextras/wsdl/

To see the Contract IDs for the components that implement these inter-
faces, either read the .h header files in this directory, or use the Component
Viewer tool list component Contract IDs with this prefix:

@mozilla.org/xmlextras/wsdl/

AppDevMozilla-16 Page 661 Thursday, December 4, 2003 6:38 PM

662 XPCOM Objects Chap. 16

Such a listing will only work on versions 1.4 and later, which is the minimum
version for full WSDL support.

16.4.6 XSLT Batch Processing

The Mozilla XSLT processing system can be exploited by scripts using this
XPCOM pair:

@mozilla.org/document-transformer;1?type=text/xsl nsIXSLTProcessor

An object with this interface accepts two DOM trees or subtrees as arguments:
One is a tree of XSLT tags that is a set of processing instructions; the other is
the content to be transformed. A third tree or subtree, which contains the pro-
cessed output, is returned. XSLT parameters can also be supplied as argu-
ments. This system cannot work in-place—the results must be attached to an
existing DOM hierarchy if that is required.

16.5 PLATFORM CONFIGURATION

Some scripting tasks inspect, manage, and update the state of the Mozilla
Platform itself. To do that, internal aspects of the platform must be revealed
via XPCOM interfaces. This topic covers the cache, file system directory, pref-
erences, security, and user profiles.

16.5.1 Cache Control

The Mozilla Browser cache is intended to be transparent to all operations, but
it is possible to interact with it if necessary. The cache is at work for all URL
requests performed by the platform, unless it is explicitly avoided or turned
off. Low-level access to the cache can be had via this XPCOM pair:

@mozilla.org/network/cache-service;1 nsICacheService

An object built this way also needs access to the constants provided by
the nsICache interface. The details are surprisingly complex because the
cache supports simultaneous access sessions with a single-write, multiple-
read locking model. This means that low-level access to the cache can fail as a
result of resource contention. It is easier to stay away from the detail and let
higher level services like transports and channels manage the interaction for
you. One handy use of this interface is the evictEntries() method, which
can be used to empty the cache.

A very simple use of the cache is prefetching. Prefetching brings an
http: URL from its original location into the cache without necessarily con-
suming or displaying it. Prefetching only works for http: URLs that are not
HTTP GET requests (a request must not have a ?param= part). Prefetching is
accomplished with this pair of XPCOM objects:

AppDevMozilla-16 Page 662 Thursday, December 4, 2003 6:38 PM

16.5 Platform Configuration 663

@mozilla.org/prefetch-service;1 nsIPrefetchService

Similar, but finer control is also available on the nsIRequest interface,
which is the basis for channels and transports. The loadFlags property can
be used on a per-URI basis to control how a retrieved URI and the cache inter-
act.

16.5.2 File System Directory

The Mozilla Platform has a directory service that allows scripts to locate well-
known files and folders.

A Mozilla directory is like a phone book: It is used to look up the detail
associated with a given name. Directories are therefore entirely separate from
the concept of an operating system’s file system and from the concept of a file
system directory. Mozilla directories are usually called directory services to
emphasize the way in which they serve up details in response to requests.
There are many directories in Mozilla.

Of the directories that Mozilla implements, some provide access to
remote resources, others provide access to data files on the local file system
like the local Mozilla Address book, and still others provide access to internals
of the running platform. One of these internally maintained directories holds
a set of well-known operating system file and folder names, all of which are
used by the platform. That is the only directory service discussed here.

Access to these file and folder names is required by scripts if applications
are to use the same file system locations as the platform. The benefits of reus-
ing these locations are that the application is then (a) properly platform-
integrated and (b) somewhat protected from portability problems.

This internal directory, called the file system directory service, is imple-
mented by this XPCOM pair:

@mozilla.org/file/directory_service;1 nsIDirectoryService

Note that directory_service contains an underscore, not a dash. This
directory holds the locations of all the files and folders about which application
programmers and applications need to know. The files and folder locations
available in this directory are therefore fundamental to Mozilla applications.
After file or folder locations are retrieved from a directory, they can be oper-
ated on just like any file or folder.

The nsIDirectoryService interface is not that useful by itself. All it
can do is manage a set of provider objects. A provider is an object that supplies
a subset of the directory contents to the directory service. In the normal case, a
directory service object provides none of its own contents. Instead, each direc-
tory service has zero or more providers registered. Each provider contributes
to the directory and supports the nsIDirectoryServiceProvider inter-
face. When a script consults the directory service, that service looks through
its providers to see if any of them have the details for the name the script

AppDevMozilla-16 Page 663 Thursday, December 4, 2003 6:38 PM

664 XPCOM Objects Chap. 16

asked about. Providers are entirely hidden from the script when they are
arranged in this way.

Apart from providers, the directory service system also uses other inter-
faces. The nsIProperties interface is the standard interface used to retrieve
details of a name recorded in the directory. A sought-after name, in the form of
a short string (effectively an alias or a nickname), is passed into the directory
service via the nsIProperties method get(). Any item in the directory that
matches that alias has its details returned. The file system directory service
implements this nsIProperties interface. Listing 16.7 shows code that uses
this standard interface:

Listing 16.7 Retrieving a file system resource from a directory with an alias.
var Cc = Components.classes;
var Ci = Components.interfaces;

var dir = Cc["@mozilla.org/file/directory_service;1"];
dir = dir.getService(Ci.nsIDirectoryService); // Initialized

// Put calls to dir.registerProvider(provider_object) here

var dir_props = dir.QueryInterface(Ci.nsIProperties);

var file = dir_props.get("myalias", Ci.nsIFile);

if (file == null)
 alert("No Such Location");

This code creates the directory service object, adds no providers at all,
grabs the nsIProperties interface, and retrieves the detail for the
"myalias" alias. Because the XPCOM file system directory service stores file
and folder information, the information returned (an object) is expected to
have the nsIFile interface.

In this example, the last line of code might produce an alert for two rea-
sons. The string “myalias” is not one of the well-known aliases, and so is
unknown to the directory. That is trivial to fix—use a known alias. More seri-
ously, there are no providers for this directory service; therefore, we expect
that no aliases would be recognized at all. That is a reasonable reading of the
code, but in practice it is not true. In practice, this directory has at least two
providers at all times.

☞ The first of these providers is added by the directory object itself when it is
created. This provider adds application-level aliases to the directory. These
aliases match the install area files and folders for the Mozilla Platform.

☞ The second of these providers is added when the platform starts up. This
provider is associated with the current user profile. It adds profile-
specific aliases to the directory. These aliases match files and folders that
are part of the current user profile.

AppDevMozilla-16 Page 664 Thursday, December 4, 2003 6:38 PM

16.5 Platform Configuration 665

☞ If the platform is displaying a Web page, and that Web page contains a
plugin or a Java applet, then a third provider is added, but only while
that page exists. This provider is associated with the plugin manager. It
adds plugin-specific aliases to the directory. These aliases are processed
differently than the other aliases (as described shortly), but a file object
matching the alias is still returned, if it exists.

A rather confusing aspect of the directory implementation is this: The
object that implements the directory service also implements a provider. This
provider is specified by the XPCOM pair:

@mozilla.org/file/directory_service;1 nsIDirectoryServiceProvider

This provider is in addition to the three providers just noted. It is never
(or rarely) registered with any directory service. Instead, it can be scripted
directly. It is not hidden as the other providers are. This last provider adds
aliases relevant to the XPCOM system that is at the heart of the platform.
These aliases are for the lowest level files and folders required by the platform
and include a number of operating-system-specific locations.

This last provider can be scripted as shown in Listing 16.8.

Listing 16.8 Retrieving a file system resource from a provider using an alias.
var Cc = Components.classes;
var Ci = Components.interfaces;

var prov = Cc["@mozilla.org/file/directory_service;1"];
prov = prov.getService(Ci.nsIDirectoryServiceProvider);

var result = {}; // an empty object
var file = prov.getFile("alias", result);

if (file == null) alert("No such location");

// alert(result.value)

Because providers are usually managed by a directory, the getFile()
method has arguments that suit a directory object. The second argument to
getFile(), an empty object, allows the provider to return some status infor-
mation back to the directory. An ordinary script can throw this information
away—it is only needed if the script is implementing its own directory service.
See the XPIDL file for nsIDirectoryServiceProvider for details.

The remainder of this topic lists the aliases supplied by all these produc-
ers, starting with this last, special provider.

16.5.2.1 XPCOM File System Aliases These aliases are provided by the spe-
cial built-in directory service provider that is accessed directly. Tables 16.13 to
16.16 list the alias options available. Table 16.13 applies to all platforms.

AppDevMozilla-16 Page 665 Thursday, December 4, 2003 6:38 PM

666 XPCOM Objects Chap. 16

Table 16.14 lists further aliases and applies only to Microsoft Windows.
The stated CSIDL constants are part of the Microsoft Windows User Interface
APIs and are used by Windows functions like SHGetFolderPath(). Each
alias stands for a well-known folder. For a full description of these constants,
see http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/refer-
ence/enums/csidl.asp.

Table 16.13 All-platform XPCOM file system aliases

Alias Description of matching nsIFile

ComRegF XPCOM component registry file—unused

ComsD Folder that holds XPCOM components

CurProcD Folder of the executable for the currently running process; always
$MOZILLA_FIVE_HOME on UNIX

CurWorkD Folder that is the present working directory of the current executable

DrvD Returns the top of the operating system’s file system—Windows: usu-
ally C:; UNIX: /; MacOS: the root volume

GreComsD Folder holding GRE (Gecko Runtime Engine) XPCOM components

GreD Folder GRE is installed in

Home Home folder for the current user—Windows: %HOME%; UNIX:
$HOME; MacOS: the documents folder

TmpD Operating system location for temporary files—Windows: %TMP%;
UNIX: $TMP; MacOS: the temporary files folder

Table 16.14 Microsoft Windows only XPCOM file system aliases

Alias CSIDL equivalent Alias CSIDL equivalent

AppData CSIDL_APPDATA netH CSIDL_NETHOOD

Buckt CSIDL_BITBUCKET NetW CSIDL_NETWORK

CmDeskP CSIDL_COMMON_DESKTOPDIRECTORY Pers CSIDL_PERSONAL

CmPrgs CSIDL_COMMON_PROGRAMS PrntHd CSIDL_PRINTHOOD

CmStrt CSIDL_COMMON_STARTUP Prnts CSIDL_PRINTERS

Cntls CSIDL_CONTROLS Progs CSIDL_PROGRAMS

DeskP CSIDL_DESKTOPDIRECTORY Rcnt CSIDL_RECENT

DeskV CSIDL_DESKTOP SndTo CSIDL_SENDTO

Drivs CSIDL_DRIVES Tmpls CSIDL_TEMPLATES

Favs CSIDL_FAVORATES WinD CSIDL_WINDOWS

AppDevMozilla-16 Page 666 Thursday, December 4, 2003 6:38 PM

16.5 Platform Configuration 667

Be aware that the aliases prefixed with Cm will fail (and throw an excep-
tion) on single-user versions of Microsoft Windows, like Microsoft Windows 98.

Table 16.15 lists further aliases; it applies to the Macintosh only.
Finally, Table 16.16 lists the remaining miscellany of aliases. Aliases for

OS/2, BeOS, OpenVMS, and others are not shown.
Together, these aliases define all the file system locations known to the

XPCOM core of the platform. It is easy to see that application code can become
nonportable if these aliases are used more than trivially.

16.5.2.2 Application File System Aliases These aliases originate from the
provider that is attached to the directory service when it is created. It is
always available. These aliases are standard across all platforms.

The XPCOM system is not the whole of the Mozilla Platform. On top of
that core is a large collection of components and infrastructure that makes up
the rest of the platform. That platform includes installation areas for browsers
and other products, chrome, caches, registries, and so on. Those locations and
the location of the user profile system are described by these aliases. They are
shown in Table 16.17.

Table 16.15 Macintosh only XPCOM file system aliases

Alias Folder Alias Folder

ApplMenu The Apple Menu Exts The Extensions folder

ClassicPrfs Mac Classic Profile folder Isrch The Internet Search folder

CntlPnl The Control Panel Prfs The Preferences folder

DfltDwnld The Default Download folder Shdwn The Shutdown folder

Docs The Documents folder Trsh The folder holding the Trash

Desk The folder holding the Desktop

Table 16.16 Miscellaneous XPCOM file system aliases

Alias Description of matching nsIFile

Fnts Macintosh and Microsoft Windows: the folder holding system fonts

LibD UNIX: /usr/local/lib/netscape

Locl UNIX: /usr/local/netscape

Strt Macintosh and Microsoft Windows: the startup folder

SysD Macintosh OSX only: the system folder

UlibDir Macintosh OSX only: the /usr/lib folder

AppDevMozilla-16 Page 667 Thursday, December 4, 2003 6:38 PM

668 XPCOM Objects Chap. 16

The DefProtRt alias returns the following per-platform values:

☞ UNIX: ~/.mozilla
☞ Windows: {CLSID_APPDATA}\Mozilla\Profiles
☞ Macintosh: :Documents:Mozilla:Profiles

16.5.2.3 Profile File System Aliases These aliases originate from a provider
added to the directory service when the platform starts up. In a full distribu-

Table 16.17 Application install file system aliases

Alias Description of retrieved object Path name relative to
install area

AppRegF The global application registry file Located elsewhere (see Chapter
17, Deployment)

AppRegD The folder holding the global applica-
tion registry

Located elsewhere (see Chapter
17, Deployment)

DefRt The top folder of the defaults area Defaults

PrfDef The folder holding the default prefer-
ences

Defaults/pref

profDef The folder holding default profile val-
ues for the current locale

Defaults/profile/{locale}

ProfDefNoLoc The folder holding default profile val-
ues for the default locale

Defaults/profile

DefProtRt The top folder for all user profiles Located elsewhere (see below)

Ares The resources folder Res

Achrom The chrome folder Chrome

SrchPlugns The folder holding plugin search and
download configuration files

Searchplugins

ApluginsDL An nsIEnumerator list of available
plugin files

Plugins/*

XPIClnupD The folder holding uninstall programs Uninstall

UserPlugins The folder under the current user pro-
file that holds profile-specific plugins

Located elsewhere

OSXUserPlugins MacOS X only; the folder holding user
plugins

Located elsewhere

OSXLocalPlugins MacOS X only; the folder holding local
plugins

Located elsewhere

MacSysPlugins Mac Classic only; the folder holding
system plugins

Located elsewhere

AppDevMozilla-16 Page 668 Thursday, December 4, 2003 6:38 PM

16.5 Platform Configuration 669

tion of the platform (i.e., one that is not embedded or otherwise cut down), it is
always available. These aliases, in Table 16.18, are standard across all plat-
forms.

16.5.2.4 Plugin File System Aliases Plugin file system aliases originate
from a provider that is added to the directory service when plugins or Java is
required. These aliases are used to retrieve a file implementing a plugin, but
they work only on Microsoft Windows.

The other directory service providers merely translate an alias to an oper-
ating-system-specific file or folder. This provider does that translation too, but
first it analyzes the available resources in more depth. It uses the alias to
extract from the platform preference information, which states the minimum
version of the plugin that is needed and whether that plugin is enabled. It then
compares any minimum enabled version with product versions installed in the
operating system. It returns a file for the operating-system-installed version if
it is sufficiently new. The version comparison is done using the format described
in Chapter 17, Deployment. The known aliases are listed in Table 16.19.

Table 16.18 Profile file system aliases

Alias Description of retrieved object Path name relative
to user profile

PrefD The folder holding the preference file; same as ProfD .

PrefF The file holding the user preferences prefs.js

ProfD The topmost folder of the current profile .

Uchrm The folder holding user chrome chrome

LclSt The file holding persistent data about the user’s Mozilla
windows

localstore.rdf

Uhist Classic Browser URL history file history.dat

Upanels Classic Browser user-defined sidebar panels file panels.rdf

UmimTyp The platform-wide MIME type information mimeTypes.rdf

Bmarks Classic Browser bookmarks file bookmarks.html

Dloads Classic Browser download history file downloads.rdf

SrchF Classic Browser search engine configuration file search.rdf

MailD Folder holding local mail accounts Mail

ImapMD Folder holding IMAP mail accounts ImapMail

NewsD Folder holding Newserver configuration News

MFCaD File holding current visual settings of Classic Mail
folders

panacea.dat

AppDevMozilla-16 Page 669 Thursday, December 4, 2003 6:38 PM

670 XPCOM Objects Chap. 16

16.5.3 Preferences

The current profile’s user preferences, the current global preferences, and a
preference file stored anywhere on the local computer can all be manipulated
from scripts. This XPCOM pair is responsible:

@mozilla.org/preferences-service;1 nsIPrefService

Preferences cannot be changed from scripts outside the chrome unless stan-
dard Web security restrictions are removed. A user can modify preferences
directly in versions 1.3 and higher by right-clicking on the content displayed
by the about:config URL.

16.5.4 Security

This topic explains how security is implemented. Because security is a big sub-
ject, we’ll look at only those security constraints that directly bear on script-
ing.

In Netscape version 4.x browsers, security checks were handled by the
Java subsystem of the browser. In Mozilla, that is no longer the case—the
Mozilla Platform handles its own security needs with its own security imple-
mentation. No Java is required.

A piece of Mozilla code can be in one of four security states: Web Safe,
Trusted, Certified, or Domain Policied. In practical terms, code means Java-
Script scripts, but these security states also apply to all downloadable docu-
ments, including HTML.

New support for WSDL in the platform includes a further wrinkle on
security. This wrinkle requires an additional security check when a remotely
located Web service is first used. This check is designed to protect the server
vending the Web service, not the platform calling that service. It requires that
the platform ask the service for permission to use the service. As this goes to
print, it is proposed that the nsIWebScriptsAccessService interface be
the client-side entry point for this check.

Most, but not all, security issues are handled in the XPConnect code that
connects JavaScript to the internals of the platform.

Table 16.19 Plugin file system aliases

Alias Description of matching nsIFile

plugin.scan.SunJRE The Mozilla OJI Java JRE plugin file

plugin.scan.Acrobat The Adobe Acrobat plugin file

plugin.scan.Quicktime The Apple Quicktime plugin file

plugin.scan.WindowsMediaPlayer The Microsoft Windows Media Player executable

plugin.scan.4xPluginFolder Netscape 4.x plugin folder

AppDevMozilla-16 Page 670 Thursday, December 4, 2003 6:38 PM

16.5 Platform Configuration 671

In all cases, if a security violation occurs, errors are reported to the Java-
Script Console.

16.5.4.1 Web Safe Security Web Safe security is the default security applied
to Mozilla applications. It is the security that applies to XUL-based applica-
tions installed outside the chrome, and it is the security applied to Web-based
applications that run inside a window that displays HTML or XML (a
browser). Web Safe security provides a nearly fully secure environment, by
putting two obstacles in the way of scripts.

The first obstacle in Web Safe security is a set of restrictions designed to
guarantee that the user interface is under end user control. An example
restriction is the requirement that all windows be at least 100 pixels wide and
high, so they are obvious to the user.

The second obstacle in Web Safe security is the Same Origin test, which
is used pervasively throughout the platform. This policy says that a script can
only use a resource that originates via the same protocol, and from the same
domain name and IP port number, as the script itself. A script downloaded
from www.test.com cannot affect a Web page downloaded from www.pages.com
or from ftp://www.test.com or even from www.test.com:99, where 99 is a dif-
ferent port number.

The Same Origin test prevents scripts from affecting different-origin
windows in a running application and from crossing frame boundaries into
different-origin documents. Both the contents of the chrome and the entire set
of XPCOM components are considered different-origin to all Web sites. There-
fore, in the case of scripts with a remote origin, components are entirely
unavailable under Web Safe security. They are also unavailable to local scripts
stored outside the chrome.

The Same Origin test does not apply to the special URL about:blank,
which is always accessible.

16.5.4.2 Trusted Security The opposite extreme to Web Safe security is
Trusted security. Scripts in the Trusted security state have no security restric-
tions at all. They can access all XPCOM components automatically and all
scripts and documents regardless of origin. Scripts and all other resources
installed in the chrome are Trusted. In particular, resources in the chrome
never need permissions from the user.

One outstanding issue with the use of chrome is that adding content into
the chrome is hard to do securely. The XPInstall system, described in Chapter
17, Deployment, does not yet insist on authentication of chrome installation
packages. Such authentication requires digital certificates and signatures.
This means that there is no guaranteed check that a package intended for the
chrome originates from the source that it claims to originate from. In theory, a
malicious chrome package could lie about its origin, and when the user agreed
to install it, it would be able to exploit its new, trusted state. In practice, no
one has yet bothered to interfere with Mozilla in this way.

AppDevMozilla-16 Page 671 Thursday, December 4, 2003 6:38 PM

672 XPCOM Objects Chap. 16

16.5.4.3 Certified Security In between the Web Safe and Trusted security
states is the Certified state. Scripts and other resources can be decorated with
digital certificates that contain public key encrypted digital signatures and
that can be authenticated (confirmed accurate) by a respected organization. In
this security state, all scripts are treated as Web Safe until their signing infor-
mation is examined. If the signing proves acceptable, then the script can act as
a Trusted script.

Digital certificates are a world of their own; only the consequences for
application scripts are noted here. To sign scripts and other resources digitally,
the SignTool tool is required. It is not provided by Mozilla, but it is available
from Netscape at the http://devedge.netscape.com Web site, along with docu-
mentation. In addition to signing files digitally, this tool can produce a test
certificate that can be used in the absence of a real certificate. Real certificates
cost money to acquire.

The use of digital certificates requires two pieces of configuration. First, a
database of certificates must be maintained by the platform. In Classic
Mozilla, this is held automatically, although some of the more obscure panels
in the preferences dialog box allow certificates to be user-managed. The second
piece of configuration is that the user must give permission every time a
signed script is encountered. That is extremely inconvenient, so browsers can
also remember the permissions the user has granted in the past and reapply
them silently on future occasions. All this configuration information is held in
the user profile.

The difference between Trusted and Certified arrangements is that a Cer-
tified arrangement requires at least one interactive confirmation by the user.
The only way to avoid this is to build a custom installation of a browser or the
platform with the required certificates and permissions already bundled with it.

The Certified security state can be attained without any certificates. This
user preference drops the need for certificates or digital signing, but it still
requires that the programmer appeal for special privileges and that the user
grant permission to use those privileges:

user_pref("signed.applets.codebase_principal_support", true);

This preference is only useful for developing applications where the ultimate
security model will be the Certified model.

If Certified security is the model chosen, then each piece of code that
wants to perform a Trusted operation (like using an XPCOM object) must
appeal to the user for permission to use that operation. That permission is
requested by preceding critical sections of code with a function call:

window.netscape.security.PrivilegeManager.enablePrivilege("P1 P2
P3");

This call either asks the user for permission with a dialog box or silently
succeeds if permission has been granted and remembered in the past. On suc-
cess, the security of the following code is raised to the Trusted state for the

AppDevMozilla-16 Page 672 Thursday, December 4, 2003 6:38 PM

16.5 Platform Configuration 673

specified privileges only. The Trusted state ends when the current JavaScript
scope ends, which is usually at the end of a function or method call.

In this call, P1, P2, and P3 are a space-separated list of privilege key-
words—at least one such keyword is required. Table 16.20 lists the available
privileges and the targets to which they control access. A target is just any
capability or functional feature of the platform.

Inside the platform, each of these privileges might be checked in a num-
ber of places so that the overall effect is that the target is fully protected by
the security system.

16.5.4.4 Policied Security The final security model available to scripts is a
set of user preferences. Policied security grants and denies Trusted access to
all documents retrieved from specific origins. An origin is a protocol + domain
+ port combination, as used in the Same Origin test. This form of security con-
trols use of specific JavaScript properties in those retrieved documents. Those
specific properties are therefore the targets for this security model. The set of
grants and denials is bundled up into one configuration item, which is called a
policy. One policy can apply to several different origins. This security model is
the least used of the security options Mozilla provides.

If this security system is not specified, retrieved documents follow the
Web Safe security model. If this security system is used, retrieved documents
may have more or less restrictions than the Web Safe model. Therefore, if the
user’s profile can be modified, Domain Policied security can be the most or
least restrictive of all the security options.

Table 16.20 Privilege strings used in code-signing security

Privilege Affected targets*

**The data in Table 16.20 appear courtesy Jesse Ruderman and mozilla.org.

UniversalBrowserRead Reading of sensitive browser data; allows the script to pass
the Same Origin check when reading from any document

UniversalBrowserWrite Modification of sensitive browser data; allows the script to
pass the Same Origin check when writing to any document

UniversalXPConnect Unrestricted JavaScript access to XPCOM components
using XPConnect

UniversalPreferencesRead Read preferences using the navigator.preference() method

UniversalPreferenceWrite Set preferences using the navigator.preference() method

CapabilityReferencesAccess Reads or sets the preferences that define security policies,
including which privileges have been granted and denied to
scripts; also requires UniversalPreferencesRead and/or Uni-
versalPreferencesWrite

UniversalFileRead Display or submit files that have file: URLs

AppDevMozilla-16 Page 673 Thursday, December 4, 2003 6:38 PM

674 XPCOM Objects Chap. 16

The Policied security model has no direct user interface in the prefer-
ences system of the Mozilla applications. Some of the checkbox preferences in
that system are implemented using this security system, but that is not obvi-
ous to the user.

This preference system exists for the following reasons:

☞ To support specific preferences that enable or disable useful functional-
ity.

☞ To compete with Internet Explorer’s zone-based preference system.
☞ To empower the user so that irritating Web sites can be individually dis-

abled.
☞ To provide a powerful and flexible system in case it proves useful.

To use this security, new user preferences must be set. Three steps are
required: define a policy name; define a set of origins that the policy applies to;
and define access rules for the individual object properties that the security
model controls. These steps are examined in turn.

There are three kinds of policy names—explicit, wildcard, and default.
Every property that might have an access rule can be associated with one of
each of these names, and these three names have a pecking order.

At the bottom of the pecking order are the default policies. There is one
default policy per JavaScript property, and it is applied if no other policies
exist. If no default policies are specified, then the single default policy named
"default" applies to all properties. This "default" default policy may also
be modified. It will shortly be clear why more than one default policy is useful.

Next from the bottom is the wildcard policy. It has the name "*" (aster-
isk). It is applied when it is explicitly stated, and in that case it overrides
default policies.

At the top are the explicit policies. These policies are named when explic-
itly stated and are applied first and foremost. These policies override the other
two kinds.

To name policies, two preferences are used:

user_pref("capability.policy.policynames","p1 test foo");
user_pref("capability.policy.default_policynames","normal,off");

The policy names are space- or comma-separated and may not contain a
period character. The first line of the preceding code specifies three policies;
the second specifies two default policies. The wildcard policy name is automat-
ically recognized and doesn’t need to be specified.

Having made up policy names, each policy is then provided with a list of
origins. Each policy will be applied only for documents retrieved from those
origin names. The names of the policies created are used in the preference
string that specifies the sites. For example, the policy called mypol has its ori-
gins specified thus:

user_pref("capability.policy.mypol.sites", "http://test.com http://
x.org");

AppDevMozilla-16 Page 674 Thursday, December 4, 2003 6:38 PM

16.5 Platform Configuration 675

The argument is a space- or comma-separated list of partial URLs, and
the word “sites” is synonymous with “origins.” The partial URLs cannot
include specific subparts of the origin’s Web site. There should be zero or one
of these preferences per site. If the policy name is a default policy name,
then the sites listed will have that default policy. This allows different
defaults for different sites. If the wildcard policy is required, specify *
instead of mypol.

After the policy names and origins are specified, all that remains is to
create the access rules. There are three types of rules. A single preference line
is required for each rule that is stated.

The first and most general rule syntax applies to all JavaScript proper-
ties, regardless of whether they are simple values or methods. For the policy
mypol, it has the syntax

user_pref("capabilities.policy.mypol.Iface.Prop","Keywords")

Iface, Prop, and Keywords must be replaced with specific strings.

☞ Iface is the name of the JavaScript object holding the property of inter-
est. In fact, it must be the shortened XPCOM interface name that has
had the nsIDOM prefix removed. Example names are ChromeWindow,
HTMLDocument, and XULImageElement. Some DOM objects have short-
hand object names like Image, but the official HTMLImageElement name
must be used.

☞ Prop is the property name to which the access rule applies. It is usually
an attribute or method of an XPCOM interface, like the value property
of many form controls.

☞ Keywords must be a space- or comma-separated list of privilege names
from Table 16.20 or one of the sole keywords AllAccess, NoAccess, or
sameOrigin. AllAccess is the same as specifying all the keywords
from Table 16.20. sameOrigin means that the Web Safe security rules
should apply. NoAccess means that the property cannot be read or writ-
ten at all.

An example rule is

user_pref("capabilities.policy.*.History.back","NoAccess");

This rule says that the wildcard policy disabled the back() method of
the nsIDOMHistory object. That object is used in the Mozilla Browser only, so
this rule serves to prevent the user from navigating backward when surfing
the Web.

The second rule syntax, which applies only to nonmethod JavaScript
properties, gives control over the ECMAScript [[Get]] and [[Set]] opera-
tions on that property. The syntax is

user_pref("capabilities.policy.mypol.Iface.Prop.Access","Keyword");

AppDevMozilla-16 Page 675 Thursday, December 4, 2003 6:38 PM

676 XPCOM Objects Chap. 16

Iface and Prop are the same as the earlier syntax. Keyword is restricted to
one of the values NoAccess, AllAccess, and sameOrigin. Access is one of
the strings set or get. This syntax therefore specifies up to two rules, one for
getting and one for setting a property in question. An example that makes the
title bar of a XUL window read-only is

user_pref("capabilities.policy.default.ChromeWindow.title.set","NoAcc
ess");

The final rule syntax applies to the special case of JavaScript. This single
preference can be used to enable or disable JavaScript entirely on a per-origin
basis:

user_pref("capabilities.policy.mypol.javascript.enabled","Keyword");

In this case, only the policy name and Keyword vary. Keyword can be set to
one of NoAccess (meaning disable JavaScript) or AllAccess (meaning
enable JavaScript). If JavaScript is globally disabled, this rule is useless.

A policy typically includes a number of these rules, which together open
up or close down access of a particular kind. In the case where access is to be
denied, every property that represents an access loophole must be plugged if
the policy is to be robust. To get a list of properties to consider, look at an
example of the JavaScript object target using the DOM Inspector. Set the right
pane of the Inspector to show the JavaScript Object option, and tick off any
property that might be exploited.

XBL bindings are good examples of loopholes. It is common for a binding
to include many convenience methods and properties. These methods and
properties often have overlapping functionality. If the end purpose is to pre-
vent a particular property on the bound object from being changed, a rule on
that property is not enough. All bindings methods and properties that touch
that property must also be disabled with a NoAccess security rule.

Using Policied Security to deny access is only a mild form of security
according to the U.S. Department of Defense Orange book on security. This is
because it is a discretionary system; enforcing security is up to the policy cre-
ator. Worse, it is a system that requires the policy creator to be aware of all
existing security loopholes in advance.

16.5.4.5 Special Restrictions Beyond the structure imposed by Mozilla
security restrictions are a few feature restrictions that are worth noting.
These restrictions apply to version 1.4 at least.

☞ It is not possible to load a string bundle from a remote location because
the platform code that fetches string bundles does not support HTTP.

☞ The JavaScript and Java security models could interoperate better. If a
Java applet is signed, JavaScript cannot use the privileged object meth-
ods in that signed applet.

That concludes the discussion of Mozilla security.

AppDevMozilla-16 Page 676 Thursday, December 4, 2003 6:38 PM

16.6 Hands On: Saving and Loading NoteTaker Notes 677

16.5.5 User Profiles

The Mozilla directory service provides access to files and folders in the current
user profile. It is also possible to access and manage the set of existing profiles.
This XPCOM pair is responsible:

@mozilla.org/profile/manager;1 nsIProfile

File system locations inside a specified profile cannot be accessed with the
nsIProfile interface. That access requires this XPCOM pair:

@mozilla.org/profile/manager;1 nsIProfileInternal

16.6 HANDS ON: SAVING AND LOADING NOTETAKER NOTES

This “Hands On” session is about reading and writing data to disk using
XPCOM objects. It shows how to work with Mozilla’s RDF support directly
from JavaScript, in a way that complements existing XUL templates. It also
shows how to get access to the current user profile, a rather trivial task.

We’ll also complete the NoteTaker tool. That means saving, deleting, and
loading notes. To do that, we must have suitable RDF data sources in place.
We’ll do our scripting with the basic XPCOM RDF interfaces rather than the
RDFLib JavaScript library. This choice is merely designed to improve our
understanding of the basic RDF services. The current note will always be
stored in JavaScript; the fact store associated with the RDF data source will
represent the pool of all currently configured notes.

We’ll also do a bit of RDF query repair. Template-based queries have
their limitations, and those limits don’t apply to scripts. Up until now, we have
had no way of finding a note for the current URL, unless the note’s URL was
an exact match. We’ll fix that. Also, the summary textbox on the toolbar is
really too simple for a template, so we’ll reimplement that query as a script. In
fact, we’ll script all the templates a little.

Like all good programming jobs, we begin with a little design.

16.6.1 Data Source Design

In Chapter 14, Templates, we made our content dynamic using the XUL
attribute of the data sources. Each template specified its own RDF data
source. Although this is a brief and convenient way to proceed, it assumes that
the URL of the notetaker.rdf file is known at application development
time. Now that the notetaker.rdf file will be stored in the user’s profile, no
such fixed URL exists.

To manage this change, we move the integration of RDF from XUL to
JavaScript. Instead of specifying the RDF file as an attribute in XUL, we spec-
ify it as an XPCOM object in JavaScript. From JavaScript, we can use other
XPCOM objects to find the RDF file’s location dynamically.

AppDevMozilla-16 Page 677 Thursday, December 4, 2003 6:38 PM

678 XPCOM Objects Chap. 16

In the XUL template code, we’ll still need a data source, or else the con-
tent isn’t a template. We use Mozilla’s empty placeholder data source, named
rdf:null. After the XUL is loaded, we’ll create a new data source from the
XPCOM URL object and attach it to each template using JavaScript. In this
way, one data source object will be responsible for all the RDF traffic to and
from the data source.

This use of a single, coordinated data source is not the only way for a set
of XUL templates to share RDF. If two templates have the same data source
attribute, then all RDF facts still come from a shared, single set of facts (a sin-
gle fact store). This must be the case, or else the code written in Chapter 14,
Templates, would not have worked. All that we are doing here is detaching the
data source from XUL so that we can supply a customized one. We could
instead create a custom data source for each template. As long as they were all
based on the same URL, they would all still operate on one shared set of facts.

After we have this data source, we can read and write it using our own
JavaScript functions and the numerous RDF interfaces available. At the same
time, the template system will access the same data source using the built-in
XUL template builder.

To make the design neater, we’ll complement the Note JavaScript object
with a NoteDataSource object. The Note object was last visited in “Hands
On” in Chapter 14, Templates. Each time we need to work on the data source,
we’ll have the option of capturing that work as a method of our new object.

16.6.2 Data Source Setup

To start with, we need to put a copy of the notetaker.rdf file (a test version)
in the current user profile if testing is to do anything useful.

Our main setup task is to get access to that RDF file. That means start-
ing with a file name and an idea of its location and ending up with an nsIRD-
FDataSource object. We’ll hard-code the file name, but not its location. We’ll
use several of the facilities described in this chapter to ready the data source.

To locate a file portably, we must use a directory service. Inspecting the
directory service tables of known aliases in this chapter, we conclude that the
ProfD alias from Table 16.18 is the most portable way to reach the current
user profile’s folder. We turn that alias into an nsIFile that holds the profile
folder, extend the path of that folder to specify our notetaker.rdf file, con-
vert the resulting file into a URL, and then finally use that URL to create a
data source. Whew. Listing 16.9 shows this code:

Listing 16.9 Finding and initializing a locally stored data source.
var Cc = Components.classes;
var Ci = Components.interfaces;

// Note session object

AppDevMozilla-16 Page 678 Thursday, December 4, 2003 6:38 PM

16.6 Hands On: Saving and Loading NoteTaker Notes 679

function NoteSession() {
 this.init();
}

NoteSession.prototype = {
 config_file : "notetaker.rdf",
 datasource : null,
 init : function (otherfile) {
 var fdir, conv, rdf, file, url;

 if (otherfile) this.config_file = otherfile;

 with (window) {
 fdir = Cc["@mozilla.org/file/directory_service;1"];
 fdir = fdir.getService(Ci.nsIProperties);

 conv = Cc["@mozilla.org/network/protocol;1?name=file"];
 conv = conv.createInstance(Ci.nsIFileProtocolHandler);

 rdf = Cc["@mozilla.org/rdf/rdf-service;1"];
 rdf = rdf.getService(Ci.nsIRDFService);
 }

 file = fdir.get("ProfD", Ci.nsIFile);
 file.append(this.config_file);

 if (!file.exists())
 throw this.config_file + " is missing";

 if (!file.isFile() || !file.isWritable() || !file.isReadable())
 throw this.config_file + " has type or permission problems";

 url = conv.newFileURI(file);
 this.datasource = rdf.GetDataSource(url.spec);
 }
};

var noteSession = new NoteSession();

The init() method of this NoteSession object does all the work. In
there, we set up three handy XPCOM objects. We extract the current user pro-
file folder as nsIFile. The append() method makes an in-place modification
to that folder so that it fully specifies our configuration file. The append()
method does not return anything. Next we perform a couple of sanity checks to
make sure that the configuration file is in place—in our completed tool we’ll
supply a skeleton copy at deployment time, so the file should always exist. In
real life, some extra logic should be included here to re-create the file in case it
has been deleted. Last, we convert from nsIFile to nsIURL using newFile-
URI(), then from nsIURL to String with url.spec, and finally from String
to nsIRDFDataSource with getDataSource().

AppDevMozilla-16 Page 679 Thursday, December 4, 2003 6:38 PM

680 XPCOM Objects Chap. 16

This series of steps is a standard approach for readying a data source. If
the data source is internal or remote, some steps might vary a bit. For exam-
ple, if the URL of the data source is known in advance, little more than Get-
DataSource() is required.

16.6.3 Dynamically Allocating Data Sources to Templates

Now that we have a data source available, let’s use it. We want to modify the
existing templates so that their displayed data come from the data source’s
URL, not from a hard-coded XUL attribute. To do that, we’ll use a placeholder
attribute datasources="rdf:null" until the real data source is scripted in.

16.6.3.1 Toolbar Changes We will throw away altogether the template used
on the NoteTaker toolbar <textbox>. We’re making this change because it’s
unnecessarily complex—the textbox need only act as a simple form element.
We only included this template in previous chapters to illustrate the simplest
of template uses. Templates aren’t a final solution for every problem. The plain
<textbox> returns to

<textbox id="notetaker-toolbar.summary"/>

This textbox is filled by refresh_toolbar(). That function will now do
a simple copy from our note object, instead of a template rebuild. That’s all for
the summary textbox on the toolbar.

The Keyword dropdown menu on the toolbar has a very standard tem-
plate query. There would be no reason to change it if the profile-specific data
source could be hard-coded. Because it can’t be hard-coded, we must change
code in both XUL and JavaScript.

This menu has been data-driven since Chapter 14, Templates, but it has
not been as dynamic as it may seem. In Chapter 14, it was generated at XUL
page creation time and remained static thereafter. From now on, it must
change anytime a keyword is added. Any XUL content added or removed may
cause the document, including the menu, to reflow. Reflow is an automatic pro-
cess, but it works most reliably on simple tags. For complex tags like
<menulist>, careful use of XUL is required. Used carelessly, the menu will
appear broken.

To see this broken effect, recall that the original <menulist> and tem-
plate has the form of Listing 16.10. This listing has "rdf:null" as the place-
holder data source.

Listing 16.10 NoteTaker <menupopup> before dynamic support.
<menulist id="notetaker-toolbar.keywords" editable="true">
 <menupopup datasources="rdf:null" ref="urn:notetaker:keywords">
 <template>
 <menuitem uri="rdf:*"
 label="rdf:http://www.mozilla.org/notetaker-rdf#label"/>

AppDevMozilla-16 Page 680 Thursday, December 4, 2003 6:38 PM

16.6 Hands On: Saving and Loading NoteTaker Notes 681

 </template>
 </menupopup>
</menulist>

Note that only the <menuitem> tags are part of the template. With
“rdf:null” in place, the complete menu, consisting of static XUL and gener-
ated template content, will appear instead as

<menulist id="notetaker-toolbar.keywords" editable="true">
 <menupopup datsources="rdf:null" ref="urn:notetaker:keywords">
 </menupopup>
</menulist>

Figure 16.2 shows the results of this changed code.

This user interface has layout problems and interaction problems; the
sources of these problems can be found in Listing 16.10. We might decide to
overlook these problems. After all, our code will modify the template from an
onload handler so that rdf:null is replaced right away with our hand-
crafted data source. This should generate <menuitem> tags for the menu, and
all should be well.

Unfortunately, all is not well. The popup (dropdown) content is sized by
the <menupopup> tag, which has a frame. That frame does not dynamically
relayout after it is created, or at least not yet. This means the XUL code in
Listing 16.10 will not work when its template is modified after display. Listing
16.11 shows a better version of that Listing 16.10:

Listing 16.11 NoteTaker <menupopup> after dynamic support.
<menulist id="notetaker-toolbar.keywords"
 editable="true"
 datasources="rdf:null"
 ref="urn:notetaker:keywords"
>
 <template>
 <menupopup>
 <menuitem uri="rdf:*"
 label="rdf:http://www.mozilla.org/notetaker-rdf#label"/>
 </menupopup>
 </template>
</menulist>

In this version, the <template> tag and associated attributes have been
moved up one in the tag hierarchy. Now, the <menupopup> tag pair is regener-

Fig. 16.2 Templated <menulist> with zero items.

AppDevMozilla-16 Page 681 Thursday, December 4, 2003 6:38 PM

682 XPCOM Objects Chap. 16

ated every time the template runs. Only one <menupopup> tag pair will be
generated because those tags are outside the spot where the uri attribute is
declared. Recall that the uri attribute is the beginning point for per-query
solution generation of template content. Because the <menupopup> is gener-
ated each time <menuitem>s are generated, there is opportunity for the
<menupopup>’s frame, also created each time, to get its layout correct. This is
the recommended approach for template-driven dropdown menus whose con-
tent must change after the initial display.

Even with this fix, the keywords menu may have one further usability
problem, although this problem doesn’t appear in our particular application.
Figure 16.3 shows a test toolbar before and after a menu dropmarker has been
clicked once. The top window is the before case.

In this test, the <textbox> at the top of the menu has an initial width
that is the default for a <textbox> tag. When the menu is clicked, the menu
items are exposed, and the textbox is layed out again to match the width of the
widest menu item. The net result is that the dropmarker for the menu jumps
to one side. This is confusing for the user. A workaround is to set the width
attribute on the <menulist> tag. Fortunately, this problem doesn’t occur for
NoteTaker, provided a real Web page is displayed.

JavaScript changes required for this newly dynamic menu are quite sim-
ple. The functions refresh_toolbar() and init_toolbar() must be
changed to attach the new data source to the menu template. Listing 16.12
shows these two functions with data source changes.

Listing 16.12 NoteTaker toolbar changes for data-source-based templates.
// onload browser listeners work in the capture phase
window.addEventListener("load", init_handler, true);

// load RDF content for the toolbar. Relies on note object.
function init_toolbar(origin)
{
 if (origin != "timed") {
 // avoid running inside any onload handler
 setTimeout("init_toolbar('timed')",1);
 }
 else
 {

Fig. 16.3 Reflow problems with templated menus.

AppDevMozilla-16 Page 682 Thursday, December 4, 2003 6:38 PM

16.6 Hands On: Saving and Loading NoteTaker Notes 683

 var menu = window.document.getElementById('notetaker-
toolbar.keywords');

 menu.database.AddDataSource(noteSession.datasource);
 menu.ref = 'urn:notetaker:keywords';
 setInterval("content_poll()", 1000);
 }
}

// update the toolbar based on the latest content.
function refresh_toolbar()
{
 var box = document.getElementById('notetaker-toolbar.summary');
 box.value = note.summary;

 var menu = document.getElementById('notetaker-toolbar.keywords');
 menu.ref = 'urn:notetaker:keywords';
}

In “Hands On” in Chapter 14, Templates, these functions nervously
called rebuild() every time a template changed in the least. Now, however,
it’s clear that the template data are based on the xml-datasource data
source, which supports fully coordinated template updates. A call to
rebuild() is therefore not required. If in doubt though, always call
rebuild().

The init_toolbar() function in this listing attaches the new data
source to the dropdown menu template, updates the template’s ref property,
and starts content_poll(), which watches the content part of the browser
for URL changes. Even though the ref property doesn’t change value, this
assignment tells the template to recalculate solutions for the query held.

The setTimeout() call is, as before, a workaround for outstanding
defects in the onload event handler. Compare refresh_toolbar() with the
Refresh() method of nsIRDFRemoteDataSource. The latter method
refreshes the fact store on which a given data source is based. The
refresh_toolbar() function refreshes only XUL content, including XUL
content that results from a template query.

That concludes the display-oriented changes to the NoteTaker toolbar.
We’ll return to the toolbar when we script up support for user data entry.

16.6.3.2 Edit Dialog Changes The NoteTaker Edit dialog box is the other
part of the NoteTaker tool that contains templates. Those templates also
require script-initialized data sources. The Edit panel of the dialog box doesn’t
have any templates at all. The Keyword panel has a template on a <listbox>
and another on a <tree>.

The procedure for attaching a data source to these two templates is very
similar to the procedure used on the toolbar. We replace data-
sources="notetaker.rdf" with datasources="rdf:null" in two places
in editDialog.xul . We create a funct ion init_dialog() in

AppDevMozilla-16 Page 683 Thursday, December 4, 2003 6:38 PM

684 XPCOM Objects Chap. 16

dialog_action.js, and we modify the existing refresh_dialog() func-
tion. Those updated functions are shown in Listing 16.13.

Listing 16.13 NoteTaker dialog changes for data-source-based templates.
window.addEventListener("load", init_dialog, "true");

function init_dialog()
{
 if (origin != "timed") {
 // avoid running inside any onload handler
 setTimeout("init_dialog('timed')",1);
 }
 else
 {
 var listbox = document.getElementById('notetaker.keywords');
 listbox.database.AddDataSource(window.opener.noteSession.datasource);

 var tree = document.getElementById('notetaker.related');
 tree.database.AddDataSource(window.opener.noteSession.datasource);

 refresh_dialog();
 }
}

function refresh_dialog()
{
 var listbox = document.getElementById('dialog.keywords');
 listbox.ref = window.opener.note.url;
 //listbox.ref = "http://saturn/test1.html"; // test case

 var tree = document.getElementById('dialog.related');
 tree.ref = window.opener.note.url;
 //tree.ref = "http://saturn/test1.html"; // test case
}

The init_dialog() funct ion i s near ly ident ica l to the
init_toolbar() function, adding the same data source to each of the two
keyword templates. The refresh_dialog() function is also similar and
includes some example URLs from the notetaker.rdf test data that can be
used to unit test the template updates. These changes make no difference to
the user interface; they merely support the relocated notetaker.rdf file.

In the “Hands On” session in Chapter 13, Listboxes and Trees, we exper-
imented with dynamic listboxes scripted up using the DOM interfaces and no
templates. That code required about 30 lines of JavaScript. In the “Hands On”
session in this chapter, we have achieved the same effect using a template and
only a few lines of scripting.

With these changes in place, all the NoteTaker tool’s templates are now
driven from the notetaker.rdf file located in the user profile.

AppDevMozilla-16 Page 684 Thursday, December 4, 2003 6:38 PM

16.6 Hands On: Saving and Loading NoteTaker Notes 685

16.6.4 Scripted RDF Queries Using XPCOM Interfaces

XUL’s template system is just one way to create a query on a set of RDF facts.
It is a declarative approach similar to SQL. Another approach is to pick
through the RDF facts by hand, using a script. This is equivalent to navigating
a data structure, so it is an algorithmic or algebraic approach. This second
approach means using the many XPCOM interfaces that are available for
manipulating RDF content. Those interfaces provide some navigation assis-
tance, so the scripting effort required is as large as it might seem.

The NoteTaker tool has one query that benefits from a scripted solution.
That query is responsible for looking up any existing note for the currently
displayed URL. Templates are not an automatic solution for this case for sev-
eral reasons:

☞ The destination of the data is JavaScript, not XUL, and templates don’t
support the <script> tag as content.

☞ This query has no visual output.
☞ The “Chop Query” feature of the dialog box works two ways. Not only

does it optionally remove the parameters from the URL for an HTTP
GET request, but it also demands that such a URL be matched to a note
with or without the parameter string present. That kind of matching
means string operations on the URL.

Templates don’t provide string operations, but scripts do, so we’ll imple-
ment this lookup query with a script.

This lookup query is implemented by the resolve() method of the note
object, in notes.js. This method was created as a stub in past chapters and
now gains a full implementation. It loads the RDF details for a note into the
properties of the note object. Listing 16.14 shows its implementation.

Listing 16.14 NoteTaker script-based RDF query.
resolve : function (url) {
 var ds = window.noteSession.datasource;
 var ns = "http://www.mozilla.org/notetaker-rdf#";

 var rdf = Cc["@mozilla.org/rdf/rdf-service;1"];
 rdf = rdf.getService(Ci.nsIRDFService);

 var container = Cc["@mozilla.org/rdf/container;1"];
 container = container.getService(Ci.nsIRDFContainer);

 var cu = Cc["@mozilla.org/rdf/container-utils;1"];
 cu = cu.getService(Ci.nsIRDFContainerUtils);

 var seq_node = rdf.GetResource("urn:notetaker:notes");
 var url_node = rdf.GetResource(url);
 var chopped_node = rdf.GetResource(url.replace(/\?.*/,""));

AppDevMozilla-16 Page 685 Thursday, December 4, 2003 6:38 PM

686 XPCOM Objects Chap. 16

 var matching_node, prop_node, value_node;

 if (!cu.IsContainer(ds,seq_node)) {
 throw "Missing <Seq> 'urn:notetaker:notes' in " +

noteSession.config_file;
 return;
 }
 container.Init(ds,seq_node);

 // Try the full URL, then the chopped URL, then give up

 if (container.IndexOf(url_node) != -1) {
 matching_node = url_node;
 this.url = url;
 this.chop_query = false;
 }
 else if (container.IndexOf(chopped_node) != -1) {
 matching_node = chopped_node;
 this.url = url.replace(/\?.*/,"");
 }
 else {
 this.url = null;
 return;
 }
 else
 return;

 // Something found; grab all the note properties for it.

 var props = ["summary", "details", "width", "height", "top", "left"];

 for (var i=0; i<props.length; i++)
 {
 pred_node = rdf.GetResource(ns + props[i]);
 value_node = ds.GetTarget(matching_node, pred_node, true);
 value_node = value_node.QueryInterface(Ci.nsIRDFLiteral);
 this[props[i]] = value_node.Value;
 }
}

First, this method readies the three main service objects that the RDF
system provides. The nsIRDFService object is used to turn plain URL strings
into nsIRDFResource objects, which are a subtype of the generic nsIRDFN-
ode type. Most RDF methods do not accept string arguments; nsIRDFNode
objects are generally required. We create such objects for both the full URL
and the chopped URL. The sole use of the nsIContainerUtils interface fol-
lows. It is used to confirm that the urn:notetaker:notes resource is a con-
tainer in the notetaker.rdf file. If this much is not in place, then there is a
problem with that file, and the method aborts with an error. The nsIRDFCon-
tainer interface is then used to link the container (<Seq>) URI with the data
source, and that link is initialized. Normally, access to the data source is on a

AppDevMozilla-16 Page 686 Thursday, December 4, 2003 6:38 PM

16.6 Hands On: Saving and Loading NoteTaker Notes 687

fact-by-fact basis. This last interface allows an RDF container and its mem-
bers to be treated as though they were a data structure. That structure is the
RDF equivalent of a table index. With that, the initialization part of the
method ends.

The if .. else cascade contains the start of the scripted query. In this
case, that query is quite trivial. It says: Search for a fully matching resource in
the data source, and if that fails, search for a resource that matches the dis-
played URL without its query parameters. If both fail, give up.

The remainder of the query pulls out all the facts that represent prop-
erty/value pairs for the found note. rdf.GetTarget() always returns an
nsIRDFNode, so that object must be converted to the type we really expect for
the property’s value, which is a literal string. We’re not storing window mea-
surements as integers. Finally, those retrieved values are copied into the
matching properties of the note object. This part of the code assumes that the
note is well formed (properly created) in the notetaker.rdf file.

Overall, this query is a two-fact query that follows the general pattern of
a simple syntax template query, except for the special checks at the start of
the different URL strings.

If you test this resolve() method, perhaps by adding test code such as
this

note.resolve("http://saturn/test1.html");

then the code will almost certainly fail with unexpected errors. Typically it is
the first use of an RDF interface that fails, but failure might occur deeper in the
code, or worse, intermittently. The culprit causing these failures is outside the
note object—it is in the noteSession object. There, the data source for the
RDF file is initialized in the init() function with this call:

this.datasource = GetDataSource(url.spec);

This initialization is wrong for our purposes. It causes the data source to
be loaded asynchronously so that the fact store for that data source will only
fill over time. Meanwhile, our scripts have raced forward and the note object is
trying to probe the data source before it is ready. No wonder that RDF meth-
ods complain that expected containers or resources aren’t present in the data
source. The solution is to load the data source differently:

this.datasource = GetDataSourceBlocking(url.spec);

This causes a tiny delay when the browser window is first displayed, but it’s
livable for our simple case.

We could work around this tiny delay with a more sophisticated strategy
that perhaps uses the nsIRequestObserver or nsIStreamListener inter-
faces of the xml-datasource’s XPCOM component. Those interfaces can be
used to detect the ending of an asynchronous load. Some XPCOM objects cre-
ated in this method are also created in other methods. Overhead could be

AppDevMozilla-16 Page 687 Thursday, December 4, 2003 6:38 PM

688 XPCOM Objects Chap. 16

reduced by adding created XPCOM objects to the noteSession object, where
they would be available for reuse. That’s a job for another day.

In past chapters, we wrote scripts to push the note object’s data out into
the form fields and into the HTML document of the browser’s GUI. Now we’ve
connected the note object to the RDF fact store and configuration file that per-
sistently holds the notes. As a result, the display of existing notes works. We
only need to change a small omission in the toolbar_action.js file. In
function content_poll(), this

display_note()

should read this

if (note.url != null) display_note()

That leaves Web pages without notes free of any decoration. Much better!

16.6.5 When to Move User-Entered Data into RDF

In addition to displaying RDF content, the NoteTaker tool is designed to cap-
ture it. The last time this was properly organized was in Chapter 7, Forms and
Menus, when we sent the captured data to a Web server. This session puts that
data into an RDF fact store, and ultimately into a local file. The main alter-
nate solution is to use a relational database.

For our purposes, entering data means adding it to a data source. It will
sit in memory until either the user chooses an action that makes it permanent
or the platform is shut down. That is a design choice.

Data can be entered either via the NoteTaker toolbar or via either panel
in the dialog box. Let’s look at each of these, starting with the toolbar.

The summary and keyword fields of the toolbar provide a quick way to
create or update a note. Such a note can have its summary modified and a sin-
gle keyword added. If the user fills these fields, but doesn’t press any of the
toolbar buttons (Edit, Save, or Delete), then nothing happens. Therefore, user
changes to these fields can be handled in the commands available from the
toolbar. There is no need for onchange event handlers or anything like that.

The Edit panel of the dialog box is the same as the toolbar. Changes
made by the user only need to be recorded if the user presses the Ok button;
they can be discarded if the dialog box is canceled. The Keywords panel, how-
ever, is more complex.

The Keywords panel allows any number of new keywords to be collected
using the Add and Delete buttons on that panel. The question is: Where
should these values be kept while the dialog box is displayed? If the user ulti-
mately cancels the dialog box, these new keywords should be thrown away. If
the user ultimately accepts the changes, these new keywords should be pre-
served. The problem is that we want the <listbox> and <tree> parts of the
panel to update when keywords are added. This means that those keywords

AppDevMozilla-16 Page 688 Thursday, December 4, 2003 6:38 PM

16.6 Hands On: Saving and Loading NoteTaker Notes 689

must be stored in RDF where the templated tags can find them, even when
we’re not sure if they are ultimately to be kept or not.

In a nutshell, we have an undo or transaction rollback problem to solve.
We want to be able to insert keywords into a data source where they’re shared,
but possibly remove them later if they’re not ultimately wanted. The solution
we choose is to implement a new command controller. That controller will
record the keyword changes in an undo buffer. If it receives a rollback com-
mand, it will reverse all the commands made to date, and consequently any
RDF changes. This solution is a design choice, but it is easily applied to most
applications.

The result of this design is that all data entry processing is processed
behind the command infrastructure. That is a very neat arrangement. In sum-
mary, data sits passively in form elements until the user causes a command to
run. The command may push that data into a fact store where it is then more
generally available across the application. This is particularly useful for tem-
plates. If the command is responsible for persisting the information, then the
fact store will also be flushed to disk or sent over a network.

16.6.6 Enhancing Commands to Process RDF Content

Finally, we turn to the code that pushes data from the user to disk, rather
than the other way around. We will update the action() function for the tool-
bar and the dialog box and implement a new controller for the special keyword
support in the dialog box.

The toolbar action() function supports the notetaker-open-dialog,
notetaker-save, notetaker-display, and notetaker-delete com-
mands. Only -save and -delete require RDF processing. These two com-
mands are quite lengthy, so Listing 16.15 only shows the simpler notetaker-
save command.

Listing 16.15 NoteTaker script-based RDF update and save.
function action(task)
{
 var ns = "http://www.mozilla.org/notetaker-rdf#";

 var rdf = Cc["@mozilla.org/rdf/rdf-service;1"];
 rdf = rdf.getService(Ci.nsIRDFService);

 var container = Cc["@mozilla.org/rdf/container;1"];
 container = container.getService(Ci.nsIRDFContainer);

 var url_node;

// ... other commands removed ...

 if (task == "notetaker-save")
 {

AppDevMozilla-16 Page 689 Thursday, December 4, 2003 6:38 PM

690 XPCOM Objects Chap. 16

 var summary = document.getElementById("notetaker-toolbar.summary");
 var keyword = document.getElementById("notetaker-toolbar.keywords");

 var update_type = null;

 if (note.url != null)
 {
 if (keyword.value != "" || summary.value != note.summary)
 {
 update_type = "partial"; // existing note: update summary,

keywords
 url_node = rdf.GetResource(note.url);
 }
 }
 else if (window.content && window.content.document
 && window.content.document.visited)
 {
 update_type = "complete"; // a new note
 url_node = window.content.document.location.href;
 url_node = url_node.replace(/\?.*/,""); // toolbar chops any query
 url_node = rdf.GetResource(url_node);
 }

 if (update_type == "complete")
 {

 // add the note's url to the note container
 var note_cont = rdf.GetResource("urn:notetaker:notes");
 container.Init(noteSession.datasource,note_cont);
 container.AppendElement(url_node);

 // add the note's fields, except for keywords
 var names = ["details", "top", "left", "width", "height"];
 var prop_node, value_node;

 for (var i=0; i < names.length; i++)
 {
 prop_node = rdf.GetResource(ns + names[i]);
 value_node = rdf.GetLiteral(note[names[i]]);
 noteSession.datasource.Assert(url_node, prop_node, value_node,

true);
 }
 }

 if (update_type != null)
 {
 // update/add the summary
 var summary_pred = rdf.GetResource(ns + "summary");
 var summary_node = rdf.GetLiteral(summary.value);

noteSession.datasource.Assert(url_node, summary_pred,
summary_node, true);

 // begin work on a single new keyword

AppDevMozilla-16 Page 690 Thursday, December 4, 2003 6:38 PM

16.6 Hands On: Saving and Loading NoteTaker Notes 691

 var keyword_node = rdf.GetResource("urn:notetaker:keyword:" +
keyword.value);

 var keyword_value = rdf.GetLiteral(keyword.value);

 // make this keyword related to one other keyword for this note
 var keyword_pred = rdf.GetResource(ns + "keyword");
 var related_pred = rdf.GetResource(ns + "related");
 var keyword2 = noteSession.datasource.GetTarget(url_node,

keyword_pred, true);
 if (keyword2)
 noteSession.datasource.Assert(keyword_node, related_pred,

keyword2, true);

 // add the keyword to this note
 noteSession.datasource.Assert(url_node, keyword_pred, keyword_node,

true);

 // state the keyword itself
 var label_pred = rdf.GetResource(ns + "label");
 noteSession.datasource.Assert(keyword_node, label_pred,

keyword_value, true);

 // add the keyword to the container holding all keywords
 var keyword_cont = rdf.GetResource("urn:notetaker:keywords");
 container.Init(noteSession.datasource,keyword_cont);
 container.AppendElement(keyword_node);
 }

 // write it out

noteSession.datasource.QueryInterface(Ci.nsIRDFRemoteDataSource)
.Flush();

 note.resolve();
 display_note();
 }

This code contains the RDF equivalent of one database transaction. It
starts with some standard preparation—access to the XPCOM RDF inter-
faces—and then examines the GUI to see what kind of save is required. By col-
lecting the summary field, the keyword field, the note and noteSession
objects, and the state of the currently displayed URL, the code determines
whether a note already exists. We cheat a little and reuse some information
from the content_poll() function, such as the visited property.

If the note already exists, the only changes must be toolbar changes, so
the saving of the note is a partial update of the existing note facts. If the note
doesn’t exist, then the note needs to be added (inserted), which requires a com-
plete update of those facts. When a note is added from the toolbar, we also
chop off any HTTP GET query string from the URL. At the end of all that
examination, the update_type variable says what to do.

AppDevMozilla-16 Page 691 Thursday, December 4, 2003 6:38 PM

692 XPCOM Objects Chap. 16

Because a partial update is a subset of a complete update, the partial
case is shared by all updates. This branch in the code

if (update_type == "complete")

contains the complete update logic, except for the shared part; this branch

if (update_type != null)

holds the shared part used by both the complete and partial updates. Let’s
look at each one in turn.

The complete update code grabs the urn:notetaker:notes container
and adds the URL for the note to it. That’s one fact. It then steps through all
the properties that a note has, except for the summary and a keyword. It adds
those as well. That’s five more facts for a total of six. All strings must be con-
verted to nsIRDFNote objects or equivalent subtypes before they can be sub-
mitted to RDF.

The partial update code is then called in all cases where it’s possible to
create a note. You can’t create a note for an about:blank URL or for an FTP
site, so it’s possible that the notetaker-save action will do nothing. The
summary is straightforward—we just add one more fact. If the fact already
exists, then the Assert() statement that adds it again will have no effect. By
default, and in all normal circumstances, duplicate facts aren’t allowed in a
data source, so it’s safe to assert a fact that might already be there.

The partial code then addresses the trickier matter of an entered key-
word. If the note already has a keyword, then we want this keyword to be
“connected” (related) to the other keywords in the note. That means a fact
stating that (any) one keyword in the note is related to this new keyword. So
we fish out an existing keyword value; if one’s found, we add a fact stating the
relatedness of the new and existing keyword. We do this first to avoid relating
our new keyword to itself. That might happen if we added the new keyword
first. The remaining code is straightforward: We add the keyword to the note;
we add the keyword to the list of all keywords in the urn:notetaker:key-
words container; and we add the keyword itself. That is four more facts.

At the end of this code, we’ve added 1 + 4 (+ optional 5) facts to the data
source. Because the data source is based on the fully featured xml-data-
source, these changes are automatically pushed to all templates using the
data source. We then call the Flush() method to push the data source out to
disk. Be aware that this command will write out the notetaker.rdf file with
the facts in a near-random order, so any pretty formatting of that file will be
lost. To finish up, we update and display the note, bringing our non-RDF data
structures and the GUI into agreement with RDF.

That concludes the processing required for the notetaker-save com-
mand. The notetaker-delete command is equally detailed; the challenge in
that command is to identify keywords no longer needed and to identify key-
words still needed by other notes. That requires some analysis of the many dif-

AppDevMozilla-16 Page 692 Thursday, December 4, 2003 6:38 PM

16.6 Hands On: Saving and Loading NoteTaker Notes 693

ferent cases that are possible, which we won’t do here. The Delete button on
the Keywords panel has very similar logic; we’ll discuss it shortly.

The Edit dialog box’s action() function supports commands note-
taker-nav-edit, notetaker-nav-keywords, notetaker-save, note-
taker-load, and notetaker-close-dialog. Of these, the notetaker-
save command is the only one requiring RDF work. In fact, we can reuse the
notetaker-save command on the toolbar if we’re organized enough: Listing
16.16 illustrates.

Listing 16.16 Improvements to the dialog box notetaker-save command.
if (task == "notetaker-save")
{
 var field, widget, note = window.opener.note;

 for (field in note)
 {
 widget = document.getElementById("dialog." + field.replace(/_/,"-"));

 if (!widget) continue;

 if (widget.tagName == "checkbox")
 note[field] = widget.checked;
 else
 note[field] = widget.value;
 }
 window.opener.setTimeout('execute("notetaker-save")',1);
}

This single extra line runs the toolbar’s notetaker-save command. We
can’t call window.opener.execute() directly because the function would
run in the dialog window’s context. We want it to run in the browser window’s
context. Calling the browser window’s setTimeout() method ensures that
the right window context starts up when the timed command is run.

Finally, extra commands are required for the Keywords pane of the Edit
dialog box. These commands will be collected into a controller that supports
commit and undo operations. It will support these commands: notetaker-
keyword-add, notetaker-keyword-delete, notetaker-keyword-com-
mit, and notetaker-keyword-undo-all. Because these commands are
closely tied together and will share data, it’s not convenient to implement
them separately in the action() function. Instead, they’ll be implemented
directly in the controller. We’ll make a new file named keywordControl-
ler.js for this controller. Listing 16.17 shows the structure of this controller.

Listing 16.17 Command controller for dialog box’s RDF keywords.
var keywordController = {
 _cmds : { },
 _undo_stack : [],

AppDevMozilla-16 Page 693 Thursday, December 4, 2003 6:38 PM

694 XPCOM Objects Chap. 16

 _rdf : null,
 _ds : null,
 _ns : "http://www.mozilla.org/notetaker-rdf#",
 _related : null,
 _label : null,
 _keyword : null,

 init : function (ds) { ... initialize ... },
 _LoggedAssert : function (sub, pred, obj) { ... },
 _LoggedUnassert : function (sub, pred, obj) { ... },

 supportsCommand : function (cmd) { return (cmd in this._cmds); },
 isCommandEnabled : function (cmd) { return true; },
 onEvent : function (cmd) { return true; },
 doCommand : function (cmd) {
 ... preparation code ...
 switch (cmd) {
 case "notetaker-keyword-add":
 case "notetaker-keyword-delete":
 case "notetaker-keyword-commit":
 case "notetaker-keyword-undo-all":
 }
 }
};

keywordController.init(window.opener.noteSession.datasource);

Like all command controllers, this controller has the standard four com-
mands, starting with supportsCommand(). The doCommand() method
implements a different case statement for each command attempted. The con-
troller also has many custom features. The controller holds a number of vari-
ables, and an array called _undo_stack will hold the steps that need to be
reversed. The _LoggedAssert() and _LoggedUnassert() methods perform
RDF manipulation as for Assert() and Unassert(), but they also make a
record of their actions in the undo stack. Let’s first make the init() method,
which is trivially shown in Listing 16.18:

Listing 16.18 Initialization of keyword command controller.
init : function (ds) {
 this._rdf = Cc["@mozilla.org/rdf/rdf-service;1"];
 this._rdf = this._rdf.getService(Ci.nsIRDFService);
 this._ds = ds;
 this._related = this._rdf.GetResource(this._ns + "related");
 this._label = this._rdf.GetResource(this._ns + "label");
 this._keyword = this._rdf.GetResource(this._ns + "keyword");
 window.controllers.insertControllerAt(0,this);
 },

This method assigns some handy objects to the controller—the RDF ser-
vice, the supplied data source, and three commonly used predicate terms. The

AppDevMozilla-16 Page 694 Thursday, December 4, 2003 6:38 PM

16.6 Hands On: Saving and Loading NoteTaker Notes 695

controller then registers itself with the dialog window. By putting it first in the
controller chain, we ensure that it is the first controller to be examined for any
commands that might occur.

The next two functions _LoggedAssert() and _LoggedUnassert()
show how a controller can retain and share information about the commands
it executes. In this case, that information is undo history about the RDF facts
asserted and removed by commands. Listing 16.19 shows these two functions.

Listing 16.19 Implementation of fact assertion undo log.
_LoggedAssert : function (sub, pred, obj)
 {
 if (!this._ds.HasAssertion(sub, pred, obj, true))
 {
 this._undo_stack.push({ assert:true, sterm:sub, pterm:pred,

oterm:obj });
 this._ds.Assert(sub, pred, obj, true);
 }
 },

 _LoggedUnassert : function (sub, pred, obj)
 {
 if (this._ds.HasAssertion(sub, pred, obj, true))
 {
 this._undo_stack.push({ assert:false, sterm:sub, pterm:pred,

oterm:obj });
 this._ds.Unassert(sub, pred, obj, true);
 }
 },

Each funct ion i s a s imple rep lacement for nsIRDFData-
Source.Assert() and nsIRDFDataSource.Unassert(). In both cases, the
fact store is first tested to see if the RDF change would have any effect. If it
would, then a record of the change to be made is created (as a four-property
object) and that record is put on the undo stack. The property assert states
whether the fact is asserted or unasserted. The genuine RDF change is then
made as normal.

These two functions are directly complemented by the notetaker-key-
word-commit and notetaker-keyword-undo-all commands. The frag-
ment of the doCommand() method responsible for these two commands
appears in Listing 16.20.

Listing 16.20 Committing and undoing fact changes using an undo log.
case "notetaker-keyword-commit":
 this._undo_stack = [];
 break;

case "notetaker-keyword-undo-all":
 while (this._undo_stack.length > 0)

AppDevMozilla-16 Page 695 Thursday, December 4, 2003 6:38 PM

696 XPCOM Objects Chap. 16

 {
 var cmd = this._undo_stack.pop();
 if (cmd.assert)
 this._ds.Unassert(cmd.sterm, cmd.pterm, cmd.oterm, true);
 else
 this._ds.Assert(cmd.sterm, cmd.pterm, cmd.oterm, true);
 }
 break;

The notetaker-keyword-commit command is trivial; it forgets the
existing undo commands so that they can’t be accidentally undone. The
notetaker-keyword-undo-all command is marginally more complex. It
steps through the stack Unassert()’ing every previously Assert()’ed fact,
and Assert()’ing every previously Unassert()’ed fact. At the end of this
processing, no items remain on the stack, so in this implementation, it’s not
possible to “undo an undo.”

Even though this undo system works on fact assertions, not commands, it
is easy to see how the stack could hold records of whole commands as trivially
as it holds records of whole facts. That possibility is also suggested in Chapter
9, Commands.

The remainder of the doCommand() method appears in Listing 16.21.

Listing 16.21 doCommand() initialization with save and delete operations.
doCommand : function (cmd) {

 var url = window.opener.content.document.location.href;
 var keyword = window.document.getElementById("dialog.keyword").value;

 if (keyword.match(/^[\t]*$/))
 return;

 var keyword_node = this._rdf.GetResource("urn:notetaker:keyword:" +
keyword);

 var keyword_value = this._rdf.GetLiteral(keyword);
 var url_node = this._rdf.GetResource(url);

 var test_node, keyword2, enum1, enum2;

 switch (cmd) {

 case "notetaker-keyword-add":
 // This keyword should be related to an existing keyword, if any
 keyword2 = this._ds.GetTarget(url_node, this._keyword, true);
 if (keyword2)
 this._LoggedAssert(keyword_node, this._related, keyword2);

 // add this keyword
 this._LoggedAssert(keyword_node, this._label, keyword_value);

 // add this keyword to the current note.

AppDevMozilla-16 Page 696 Thursday, December 4, 2003 6:38 PM

16.6 Hands On: Saving and Loading NoteTaker Notes 697

 this._LoggedAssert(url_node, this._keyword, keyword_node);
 break;

 case "notetaker-keyword-delete":
 // remove this keyword from the current note.
 this._LoggedUnassert(url_node, this._keyword, keyword_node);

 // remove this keyword and related facts if it's not used elsewhere
 enum1 = this._ds.GetSources(this._keyword, keyword_node, true);
 if (!enum1.hasMoreElements())
 {
 // this keyword
 this._LoggedUnassert(keyword_node, this._label, keyword_value);

 // this keyword is related to that keyword
 enum2 = this._ds.GetTargets(keyword_node, this._related, true);
 while (enum2.hasMoreElements())
 this._LoggedUnassert(keyword_node, this._related,
 enum2.getNext().QueryInterface(Ci.nsIRDFNode));

 // that keyword is related to this keyword
 enum2 = this._ds.GetSources(this._related, keyword_node, true);
 while (enum2.hasMoreElements())

this._LoggedUnassert(enum2.getNext().QueryInterface(Ci.nsIRDFNod
e), this._related, keyword_node);

 }
 else // this keyword is used elsewhere.
 {
 // delete related facts where keywords that this keyword
 // relates to are only found in the current note.
 enum1 = this._ds.GetTargets(keyword_node, this._related, true);
 while (enum1.hasMoreElements())
 {
 keyword2 = enum1.getNext().QueryInterface(Ci.nsIRDFNode);
 enum2 = this._ds.GetSources(this._keyword, keyword2, true);

 test_node = enum2.getNext().QueryInterface(Ci.nsIRDFNode);
 if (!enum2.hasMoreElements() && test_node.EqualsNode(url_node))
 this._LoggedUnassert(keyword_node, this._related, keyword2);

 // delete related facts where keyword that relates to this
 // keyword are only found in the current note.
 enum1 = this._ds.GetSources(this._related, keyword_node, true);
 while (enum1.hasMoreElements())
 {
 keyword2 = enum1.getNext().QueryInterface(Ci.nsIRDFNode);
 enum2 = this._ds.GetSources(this._keyword, keyword2, true);

 test_node = enum2.getNext().QueryInterface(Ci.nsIRDFNode);
 if (!enum2.hasMoreElements() && test_node.EqualsNode(url_node))
 this._LoggedUnassert(keyword2, this._related, keyword_node);
 }

AppDevMozilla-16 Page 697 Thursday, December 4, 2003 6:38 PM

698 XPCOM Objects Chap. 16

 }
 }
 break;

The ten or so lines of code prior to the switch() statement initializes
some local variables and aborts the command if there’s no current note. The
switch statement shows the notetaker-keyword-add and notetaker-
keyword-delete cases. Adding and removing keywords would be easy if we
didn’t try to maintain a sense of which keywords are related to which other
keywords. That information makes the adding and removing tasks longer.

Both commands assume that a note either already exists or is currently
being created for that URL. So the keywords added and removed are done so
in the context of a particular URL. The comments in the code describe the
steps involved, but here is a more explanatory discussion.

All this code is constrained by the fact that duplicate facts don’t exist in a
normal fact store. There are no variables in a fact store, so we can’t set both A
and B equal to 5. Every fact stored is unique. We need to manage the fact store
globally; we must consider the impact of adding or removing a fact on all other
facts in the fact store.

The keyword addition case is the easier case. It adds these facts to the
data source:

<- keyword-urn, related, keyword2-urn -> (optional)
<- note-url, keyword, keyword-urn ->
<- keyword-urn, label, keyword-literal ->

We want to ensure that all related keywords can be found for a given
note. That means any keyword belonging to a note with existing keywords
must be related to all the other keywords in the note. In our RDF model, we
capture this information by relating that one keyword to at least one of the
other keywords for that note. So we first check for other keywords and, if there
are any, relate the new keyword to one of them. After this is done, we’re free to
add this keyword in as well, first to the note as a fact object term and then in
its own right as a fact that states that the keyword exists and what its value
is. Each o f the required facts asserted i s done so through the
_LoggedAssert() interface.

The keyword deletion case is quite complex. It is easy to remove informa-
tion specific to one note, but keywords may be used by several notes, which
means that keyword-to-keyword relationships can also be used by several
notes. The first and last of the three facts stated in the addition case therefore
can’t be deleted without some careful checks of their use elsewhere in the fact
store. How we proceed depends on whether the keyword to be deleted is used
in other notes. The required tortured logic follows.

If the keyword in question is used only in a single note, then all informa-
tion about that keyword is confined to a single note. We can delete all record of
the keyword in a straightforward manner.

If the keyword in question is used in several notes, we proceed more care-

AppDevMozilla-16 Page 698 Thursday, December 4, 2003 6:38 PM

16.6 Hands On: Saving and Loading NoteTaker Notes 699

fully. We can remove the keyword reference from the current note, but we can’t
delete the keyword’s own fact. Removing facts where this keyword is related to
some other keyword is the hard part. If a keyword-related-to-our-keyword fact
is used by another note, we can’t remove it. We’ll know if that fact is so used by
checking the other keyword in the keyword. If that other keyword appears in
any other note in the fact store, the fact applies to that other note as well as the
current note, so leave it. Otherwise, remove it. We do this twice because the
keyword to be deleted could be fact subject or fact object in such a related fact.

Astute readers will note that the urn:notetaker:keywords <Seq>
should also be updated by these -add and -delete commands. We haven’t
done that because these commands are complicated enough as it is, and some
trickery is required to fit those further updates in with the undo system. In
fact, a more general solution is to couple data source observer objects with the
undo stack—a project for another day. That concludes RDF enhancement of
the NoteTaker commands.

To get all this working, we need to hook the new controller and command
calls into the dialog box. Several pieces of code are required. The editDia-
log.xul file requires an additional <script> tag:

<script src="keywordController.js"/>

That file also needs extra handlers on the <dialog> tag. These handlers are
for the keyword changes made in the dialog box.

<dialog xmlns="http://www.mozilla.org/keymaster/gatekeeper/
there.is.only.xul"

 id="notetaker.dialog"
 title="Edit NoteTaker Note"
 onload="execute('notetaker-load');"
 ondialogaccept="execute('notetaker-keyword-commit');
 execute('notetaker-save');
 execute('notetaker-close-dialog');"
 ondialogcancel="execute('notetaker-keyword-undo-all');
 execute('notetaker-close-dialog');"
 >

These handlers are getting large, and any further changes should proba-
bly be aggregated into single functions or some kind of transaction. The dialog
box has some other handlers in the file dialog_handlers.js. Two of these
other handlers reduce to trivial code now that the keyword controller has been
written:

function add_click(ev)
 {
 execute("notetaker-keyword-add");
}

function delete_click(ev)
{
 execute("notetaker-keyword-delete");
}

AppDevMozilla-16 Page 699 Thursday, December 4, 2003 6:38 PM

700 XPCOM Objects Chap. 16

With these last changes, the NoteTaker tool is complete—or at least as
complete as space allows in this book.

16.6.7 Custom RDF Tree Views and Data Sources

In “Hands On” in Chapter 13, Listboxes and Trees, we briefly experimented with
custom views. That experiment can be extended to RDF if desired. If that is done,
then the <tree> tag with the custom view can be powered from an RDF data
source without using any template. Space here does not permit a long examina-
tion of that implementation option, but a few remarks are worth making:

That Chapter 13, Listboxes and Trees, experiment implemented a
method named calcRelatedMatrix(), which built information out of a con-
stant JavaScript array named treedata. If that method is reimplemented to
extract the pairs of related keywords from a data source instead of an array,
then that experiment will work immediately, but using RDF data instead of
JavaScript data.

Such a simple replacement strategy is, however, a primitive use of the
facilities of data sources. A better solution is to use the nsIRDFObserver
interface. If the JavaScript object implementing a custom view also imple-
ments this interface, then that object can be registered as an observer on a
data source (it must be an nsIRDFCompositeDataSource). The view will
them receive notification every time a fact in the data source changes and can
incrementally update the tree’s view rather than recalculate the whole view in
one batch. That is a more sophisticated strategy that supports event manage-
ment consoles and other “server push” data systems.

Finally, we point out that an object with the nsIRDFDataSource inter-
face can be created entirely in JavaScript. Such an object can be used to pre-
tend that the data it supplies is RDF-based. Alternately, such an object might
wrap itself around one or more other data sources, in which case it is a varia-
tion on the composite data source implementation supplied by the platform.
Either way, such an object can be lodged (via JavaScript only) with a template
and can drive the appearance of the GUI just as the presupplied data source
does.

16.7 DEBUG CORNER: WORKING WITH DATA SOURCES

Some of the most common problems that hit when working with data sources
include the following:

☞ Capitalization. Unlike the rest of XPCOM, data source interface meth-
ods are stated in InitCaps, not in initCaps. Thus it is GetRe-
source() not getResource().

☞ Asynchronous loading. If the nsIRDFDataSource interface’s Get-
DataSource() methods is used to create a data source instead of Get-

AppDevMozilla-16 Page 700 Thursday, December 4, 2003 6:38 PM

16.7 Debug Corner: Working with Data Sources 701

DataSourceBlocking(), the data source loads “in the background.” In
that case, any statements manipulating that data source immediately
after its object is created are at risk. The risk is that the data source has
not finished loading yet, and so not all anticipated facts may yet be
present.

☞ Syntax problems in test data. If RDF files containing test data have
syntax errors, then facts in that RDF file will be loaded into a data source
only up to the point where the syntax error occurs. No error messages
will be given.

☞ Attempting to push content back over the Web. Data sources origi-
nating from over a network cannot yet be “saved” back to their origin
directly. Only local files can be saved (updated). To push a changed data
source back over the Web (or over FTP), turn the data source into an RDF
document using a content source interface and then use the file upload
system. For a lower level solution, use a socket.

☞ Using false as an argument to Assert() or Unassert(). The
fourth argument to these methods should always be true. Using false
expands the logic system used in the RDF facts stores in an unhelpful
way. This fourth argument says nothing about the existence of facts.
Always use true.

☞ Passing strings to Assert() or Unassert(). These methods only
accept objects of type nsIRDFNode and subtypes of that type.

☞ Problems with multiple return values. Methods such as GetTar-
gets() return an nsISimpleEnumerator object that provides a list of
possible URIs that fit the fact requested. Each object returned by this
enumerator has interface nsISupports, and QueryInterface()
should be used to extract a more useful nsIRDFNode interface, or a sub-
type of that interface.

☞ The nsIRDFContainerUtil interface and objects implementing it
generally have no life of their own. They work on other objects
passed in as arguments.

16.7.1 Revealing Data Source Content

RDF internal data sources are one of the trickiest aspects of the Mozilla Plat-
form. Listing 16.22 is a piece of code that can be used to probe their contents.

Listing 16.22 Stream creation by many methods.
function _dumpFactSubtree(ds, sub, level)
{
 var iter, iter2, pred, obj, objstr, result="";

 // bail if passed an nsIRDFLiteral or other non-URI
 try { iter = ds.ArcLabelsOut(sub); }
 catch (ex) { return; }

AppDevMozilla-16 Page 701 Thursday, December 4, 2003 6:38 PM

702 XPCOM Objects Chap. 16

 while (iter.hasMoreElements())
 {
 pred = iter.getNext().QueryInterface(Ci.nsIRDFResource);
 iter2 = ds.GetTargets(sub, pred, true);

 while (iter2.hasMoreElements())
 {
 obj = iter2.getNext();
 try {
 obj = obj.QueryInterface(Ci.nsIRDFResource);
 objstr = obj.Value;
 }
 catch (ex)
 {
 obj = obj.QueryInterface(Ci.nsIRDFLiteral);
 objstr = '"' + obj.Value + '"';
 }

 result += level + " " + sub.Value + " , " +
 pred.Value + " , " + objstr + "\n";

 result += dumpFactSubtree(ds, obj, level+1);
 }
 }
 return result;
}

function dumpFromRoot(ds, rootURI)
{
 return _dumpFactSubtree(ds, rootURI, 0);
}

The function dumpFromRoot() is the API to use. It relies on very few
aspects of the nsIRDFDataSource interface and should work for most inter-
nal data sources and for all plain RDF files. It performs a recursive breadth-
first search of a fact store using a given starting point and assumes that the
RDF graph in the fact store is structured as a tree.

This function should be passed an nsIRDFDataSource object and an
nsIRDFResource object. The data source the first object represents should be
fully loaded, or else the report generated in the result string will be incom-
plete. The rootURI argument should be a URI that is suspected of being a
container or container-owner in the RDF graph for the data source’s fact store.
The URIs listed in Table 16.11 are typical candidates. If the RDF graph con-
tains cycles, then the code will recurse forever, probably crashing the browser
eventually. It’s only a simple testing tool, so treat it that way.

AppDevMozilla-16 Page 702 Thursday, December 4, 2003 6:38 PM

16.8 Summary 703

16.8 SUMMARY

The Mozilla Platform contains more object facilities than can possibly be cov-
ered here. Because of its portability requirements, and because of its applica-
tion focus, those objects tend to be high-level ones. Perhaps one day there will
be a full POSIX interface, but the high-level application focus of the platform
reduces the urgency of any such need.

Mozilla’s XML processing facilities are particularly strong, which is no
surprise. Heavyweight XML-based networks tend to be business-to-business
rather than consumer-to-business, but Microsoft’s .NET initiative suggests
that there is plenty of need for sophisticated XML-based client-oriented soft-
ware.

Having explored first the front half and now the back half of Mozilla-
based applications, we have only to deploy those applications. Mozilla’s build
system, which is used to create compiled applications, is complemented by a
remote install system. That system, XPInstall, is the topic of our last chapter,
which follows.

AppDevMozilla-16 Page 703 Thursday, December 4, 2003 6:38 PM

