chapter

Objects

8.1

What Are Objects?

Objects are things we deal with every day. JavaScript deals with objects, as do most pro-
gramming languages, and these languages are called object-oriented programming
(OOP). Some people are apprehensive at the thought of tackling this kind of program-
ming, and are perfectly happy to stick with top-down, procedural programs. But just as
the everyday objects we use are not necessarily switchblades and chain saws, neither are
programming objects. They are just a way of representing data. JavaScript is based on
objects, so it’s time to jump in.

When talking about JavaScript data types in Chapter 3, we discussed two types: prim-
itive and composite. Objects are composite types. They provide a way to organize a col-
lection of data into a single unit. Object-oriented languages, such as C++ and Java,
bundle up data into a variable and call it an object. So does JavaScript.

When you learn about objects, they are usually compared to real-world things, like a
cat, a book, or a triangle. Using the English language to describe an object, the object
itself would be like a noun.

Nouns are described with adjectives. For the cat, it might be described as fat, furry,
smart, or lazy. The book is old, with 400 pages, and contains poems. The triangle has
three sides, three angles, and red lines. The adjectives that collectively describe these
objects are called properties or attributes. The object is made up of a collection of these
properties, or attributes.

In English, verbs are used to describe what the object can do or what can be done to
it. The cat eats, sleeps, and meows. The book is read, its pages can be turned forward
and backward, and it can be opened or closed by the reader. The triangle’s sides and
angles can be increased and decreased, it can be moved, and it can be colored. These
verbs are called methods in object-oriented languages.

JavaScript supports several types of objects. They are as follows:

127

128

Chapter8 « Objects

1. User-defined objects defined by the programmer
2. Core or built-in objects, such as Date, String, and Number (see Chapter 9)
3. Browser and Document objects (see Chapter 10)

8.1.1 Object Models and the Dot Syntax

An object model is a hierarchical tree-like structure used to describe all of the compo-
nents of an object. When accessing an object in the tree, the object at the top of the tree
is the root or parent of all parents. If there is an object below the parent it is called the
child, and if the object is on the same level, it is a sibling. A child can also have children.
A dot (.) is used to separate the objects when descending the tree; for example, a parent
is separated from its child with a dot. In the following example, the pet object is subdi-
vided into subordinate or child objects: a cat and a dog. The cat and the dog objects each
have properties associated with them. In order to navigate down the tree to the cat’s
name, for example, you would stipulate pet.cat.name, and to get the dog’s breed you
would stipulate pet.dog.breed.

name color size attitude name color breed

pet

cat dog

Figure 8.1 A hierarchical tree-like structure used to describe components of an object.

8.1.2 Creating an Object with a Constructor

JavaScript allows you to create an object in a number of ways, as discussed in detail in
“User-Defined Objects” on page 131. One such way is with a constructor. A constructor
is a special kind of method that creates an instance of an object. JavaScript comes with
several built-in constructors. The new keyword precedes the name of the constructor
that will be used to create the object.

var myNewObject = new Object (argument, argument, ...)
To create the pet object, for example, you could say:

var pet = new Object();

8.1 What Are Objects? 129

The Object() constructor, a special predefined constructor function, returns a refer-

ence to an object called pet, as shown in Example 8.1. The pet object has been instanti-
ated and is ready to be assigned properties and methods.

EXAMPLE 8.1

<html>
<head><title>The Object () Constructor</title>
<script language = "javascript">

var pet = new Object();
alert (pet) ;

</script>

</head>

<body></body>

</html>

EXPLANATION

1 The Object() constructor creates and returns a reference to a pet object. It is an
empty object; i.e., it has no properties.
2 The returned value from the Object() constructor is a reference to an object, as
shown in the Figure 8.2.
E

r [object Object]
-

Figure 8.2 Output from Example 8.1.

pet.cat

The pet object could also be further subdivided as shown in Figure 8.1.

new Object () ;

pet.dog = new Object () ;

8.1.3 Properties of the Object

Properties describe the object and are connected to the object they describe with a dot.
In Figure 8.1, the top object is the pet object. Although cat is an object in its own right,
it is also considered a property of the pet object. In fact, any object subordinate to
another object is also a property of that object. Both the cat and dog objects are properties
of the pet object. The cat and the dog objects also have properties that describe them,
such as name, color, size, and so forth.

130 Chapter8 « Objects

To assign properties to the cat object, the syntax would be as follows:

pet.cat.name = "Sneaky";
pet.cat.color="yellow";
pet.cat.size="fat";

pet.cat.attitude = "stuck up";
EXAMPLE 8.2
<html>
<head><title>The Object () Constructor</title>
<script language = "javascript">
var pet = new Object () ;

1 pet.cat = new Object();

2 pet.cat.name = "Sneaky";
pet.cat.color = "yellow";
pet.cat.size = "fat";
pet.cat.attitude = "stuck up";

</script>
</head>
<body></body>
</html>

EXPLANATION

1 New new object cat is created. It is subordinate to the pet object, so it is also a
property of the pet object.

2 The cat object is assigned a name property with the value, "Sneaky". It is also as-
signed color, size, and attitude properties.

In JavaScript you might see the syntax
window.document.bgColor = "lightblue";

The window is the top object in the hierarchy, the parent of all parents; the document
is an object but, because it is subordinate to the window, it is also a property of the window
object. Although the background color, bgColor, is a property of the document object, by
itself it is not an object. (It is like an adjective because it describes the document.)

window
document
bgColor

8.1.4 Methods of the Object

Methods are special functions that object-oriented languages use to describe how the
object behaves or acts. The cat purrs and the dog barks. Methods, like verbs, are action
words that perform some operation on the object. For example, the cat object may have

8.2 UserDefined Objects 131

8.2

a method called sleep() or play() and the dog object may have a method called sit() or
stay (), and both of them could have a method called eat().

The dot syntax is used to call the methods just as it was used to separate objects from
their properties. The method, unlike the property, is followed by a set of parentheses.

pet.cat.play();

Methods, like functions, can take arguments, or messages that will be sent to the
object:

pet.dog.fetch("ball");
A JavaScript example:

window.close () ;

window.document.write ("Hello\n") ;

User-Defined Objects

All user-defined objects and built-in objects are descendants of an object called Object.

8.2.1 The new Operator

The new operator is used to create an instance of an object. To create an object, the new
operator is followed by the constructor method. In the following example, the construc-
tor methods are Object(), Array(), and Date(). These constructors are built-in JavaScript
functions. A reference to the object is returned and assigned to a variable.

var car = new Object();
var friends = new Array ("Tom", "Dick", "Harry");
var now= new Date("July 4, 2003");

8.2.2 The Object() Constructor

A constructor is a function (or method) that creates (constructs) and initializes an
object. JavaScript provides a special constructor function called Object() to build the
object. The return value of the Object() constructor is assigned to a variable. The variable
contains a reference to the new object. The properties assigned to the object are not vari-
ables and are not defined with the var keyword. See Example 8.3.

132 Chapter8 « Objects
FORMAT

var myobj = new Object () ;

EXAMPLE 8.3

<html>
<head><title>User-defined objects</title>
<script language = "javascript">
var toy = new Object(); // Create the object
toy.name = "Lego"; // Assign properties to
toy.color = "red";
toy.shape = "rectangle";
</script>
</head>
<body bgcolor="1lightblue">
<script language = "javascript">

document .write("The toy is a " + toy.name +
document .write("
It is a " + toy.color + " "
+ toy.shape+ ".");
</script>
</body>
</html>

the object

" II) .
. ’

EXPLANATION

1
2

uUser-genned onDjeccs - Necscape

File Edit Wiew Go Communicator Help

JavaScript code startes here.

The Object() constructor is called with the new keyword to create an instance of
an object called toy. A reference to the new object is assigned to the variable, toy.

The toy object’s name property is assigned "Lego". The properties describe the
characteristics or attributes of the object. Properties are not variables. Do not use

the var keyword.
This is the end of the JavaScript program.
A new JavaScript program starts here in the body of the page.

The global object called toy is available within the script. The value of the toy ob-

ject’s name property is displayed.

The values for the color and shape properties of the toy object are displayed.

This is the end of the JavaScript program. The output is shown in Figure 8.3.

<

Back

Forward Reload Hame Search Metscape Frint Secuity Shop

s A DX o mWM S & B

wtv Bookmarks J‘ Location: |y

The toy is a Lego.
It is a red rectangle.

Figure 8.3 The toy
object and its properties.

8.2 UserDefined Objects 133

8.2.3 Creating the Object with a User-Defined Function

To create user-defined objects, you can create a function that specifies the object’s name,
properties, and methods. The function serves as a template or prototype of an object.
When the function is called with the new keyword, it acts as a constructor and builds
the new object, and then returns a reference to it.

The this keyword is used to refer to the object that has been passed to a function.

EXAMPLE 8.4

U W N

<html>
<head><title>User-defined objects</title></head>
<script language = "javascript">

function book(title, author, publisher) {
// Defining properties

this.title = title;

this.author = author;

this.publisher = publisher;

}
</script>
<body bgcolor="1lightblue"></body>
<script language = "javascript">

var myBook = new book("JavaScript by Example",
"Ellie", "Prentice Hall");
document .writeln("" + myBook.title +
"
" + myBook.author +
"
" + myBook.publisher
¥
</script>
</body>
</html>

EXPLANATION

1
2

~N o Ut bW

This is a user-defined constructor function with three parameters.

The this keyword refers to the current object that is being created. The object is
being assigned properties. The title of the book, "JavaScript by Example", is being
passed as the first parameter and assigned to the title property.

The author, "Ellie", is assigned to the author property.

The publisher, "Prentice Hall", is assigned to the publisher property.

This is the closing curly brace that terminates the function definition.
The variable, myBook, is assigned a reference to the newly created object.

The title property of the myBook object will be displayed. All of the properties of
the book object are displayed in Figure 8.4.

134

thr USer-oenned onjecrs - Nerscape

File Edit “iew @o Communicator Help

ﬁ;@iﬁ_’&adﬁg

Back Fomward Reload Haome Search Metscape Frint Secuiity
wt 7 Bookmarks \{& Location: | (gl

JavaScript by Example
Ellie
Prentice Hall

Figure 8.4 Output from Example 8.4.

8.2.4 Defining Methods for an Object

Chapter 8

Objects

The previous examples demonstrate how the constructor creates the object and assigns
properties. But we need to complete the definition of an object by assigning methods to
it. The methods are functions that let the object do something or let something be done
to it. There is little difference between a function (see Chapter 7, “Functions”) and a
method, except that a function is a standalone unit of statements and a method is
attached to an object and can be referenced by the this keyword.

EXAMPLE 8.5

<html>

<head><title>Simple Methods</title>

<script language = "javascript">
1 function distance(r, t){ // Define the object
2 this.rate = r; // Assign properties

this.time = t;

}

// be used as a method

3 function calc_distance(){ // Define a function that will
4 return this.rate * this.time;
}
</script>
</head>

<body bgcolor="1lightblue">
<script language="javascript">

5 var speed=eval (prompt ("What was your speed
"))

(miles per hour)?

var elapsed=eval (prompt ("How long did the trip take?

(hours)?" ,""));

8.2 UserDefined Objects

EXAMPLE 8.5 (CONTINUED)

6

var howfar=new distance(speed, elapsed);
// Call the constructor
howfar.distance=calc_distance; // Create a new property

var d = howfar.distance(); // Invoke method
alert ("The distance is " + d + " miles.");
</script>
</body>
</html>

EXPLANATION

1

U~ W

This is the constructor function. It creates and returns a reference to an object
called distance. It takes two parameters, r and t.

The object (referenced by the this keyword) is assigned properties.

The function calc_distance() will be used later as a method for the object.

The function returns the results of this calculation to the variable, d, on line 8.
The user is prompted for input in this statement and the next. (See Figure 8.5.)

The string he enters is evaluated by the eval() method and assigned as a number
to the variables speed and elapsed.

A new object called howfar is created with the new constructor. Two arguments
are passed, the rate (in miles per hour) and the time (in hours).

A new property for the howfar object is created. It is assigned the name of the
function, calc_distance, that will be used as a method. Note: only the name of the
function is assigned without the parentheses. Putting them there would result in
an error.

The method called distance() is invoked for the howfar object. The returned value
is assigned to variable, d.

The alert box displays the distance traveled. (See Figure 8.6.)

135

[JavaScript Application] il [JavaScript Application] il

id | v ¢
‘ wihat was your zpeed [miles per hour)? B I i) el = el

[35 |

[78 |

Figure 8.5 The user is prompted for input.

136 Chapter8 « Objects

[JavaScript Application] 5'

I’ The distance is 273 miles.
‘o i

Figure 8.6 Final oufput displayed from Example 8.5.

A Method Defined in a Constructor. Methods can automatically be assigned to
an object in the constructor function so that the method can be applied to multiple
instances of an object.

EXAMPLE 8.6

<html>
<head><title>User-defined objects</title>
<script language ="javascript">
1 function book (title, author, publisher) { // Receiving
// parameters
2 this.pagenumber=0; // Properties
this.title = title;
this.author = author;
this.publisher = publisher;

3 this.uppage = pageForward; // Assign function name to
// a property
4 this.backpage = pageBackward;
}
5 function pageForward() { // Functions to be used as methods

this.pagenumber++;
return this.pagenumber;
}

6 function pageBackward() {
this.pagenumber--;
return this.pagenumber;

}
</script>
</head>
<body bgcolor="1lightblue">
<script language = "javascript">

8.2 UserDefined Objects 137

EXAMPLE 8.6 (CONTINUED)

7

10
11

12

var myBook = new book("JavaScript by Example", "Ellie",
"Prentice Hall"); // Create new object
myBook .pagenumber=5;
document .write(""+ myBook.title +
"
" + myBook.author +
"
" + myBook.publisher +
"
Current page is " + myBook.pagenumber) ;
document .write ("
Page forward: ");
for (i=0;1<3;i++) {
document .write("
" + myBook.uppage());
// Move forward a page
}
document .write ("
Page backward: ");
for(;i>0; i--){
document .write("
" + myBook.backpage()) ;
// Move back a page
}
</script>
</body>
</html>

EXPLANATION

1

This is the constructor function that is used to build the object by assigning it
properties and methods. The parameter list contains the values for the properties
title, author, and publisher.

The this keyword refers to the book object. The book object is given a pagenumber
property initalized to 0.

A method is defined by assigning the function to a property of the book object.
this.uppage is assigned the name of the function, pageForward, that will serve as
the object’s method. Note that only the name of the method is assigned to a prop-
erty. There are no parentheses following the name. This is important. If you put
parentheses here, you will receive an error message. When the method is called
you use parentheses.

The property this.downpage is assigned the name of the function, pageBackward,
that will serve as the object’s method.

The function pageForward() is defined. Its purpose is to increase the page number
of the book by one, and return the new page number.

The function pageBackward() is defined. Its purpose is to decrease the page num-
ber by one and return the new page number.

A new object called myBook is created. The new operator invokes the book () func-
tion with three arguments: the title of the book, the author, and the publisher.

The pagenumber property is set to 5.
The properties of the object are displayed in the browser window.

138 Chapter8 « Objects

EXPLANATION (CONTINUED)

10 The for loop is entered. It will loop three times.

11 The uppage() method is called for the myBook object. It will increase the page
number by 1 and display the new value, each time through the for loop.

12 The backpage() method is called for the myBook object. It will decrease the page
number by 1 and display the new value, each time through the loop. The output
is shown in Figure 8.7.

user-defined objects with properties and methods - Netscape

File Edit Yiew Go Communicator Help

| 9 ¥ 2 A . @ S &

Back Fopward Feload Home Search Metscape Print Secu

wthookmarks \& Location:Ihttp:a"a"localhostf'ohiectsx’props_methods.html

JavaScript by Example
Ellie

Prentice Hall
Current page is 5
Page forward:

6

7

3

Page bacloward:
7

6

5

Figure 8.7 Calling user-defined methods. Output from Example 8.6.

Properties Can Be Objects. In “Properties of the Object” on page 129 we said that
any object subordinate to another object is also a property of that object; thus, if a parent
object has objects below it in the hierarchy, those child objects are properties of their
parent and separated from their parent with a dot. So how would you create subordinate
objects? You create a subordinate object just as you create any other object—with a con-
structor method. The one thing you must remember is that if the object being created is
already a property of another object, you cannot use the var keyword preceding its
name. For example, var pet.cat = new Object() will produce an error because cat is a prop-
erty of the pet object and properties are never variables. (See Figure 8.1.) Weird, huh?

8.2 UserDefined Objects 139

EXAMPLE 8.7

<html>
<head><title>Properties Can be Objects</title>
<script language = "javascript">
1 var pet = new Object(); // pet is an object
2 pet.cat = new Object(); // cat is a property of the pet
// object. cat is also an object
3 pet.cat.name="Sylvester"; // cat is assigned properties
pet.cat.color="black";
4 pet.dog = new Object();
pet.dog.breed = "Shepherd";
pet.dog.name = "Lassie";
</script>
</head>
<body bgcolor="1lightblue">
<script language = "javascript">
5 document .write ("The cat's name is " +
pet.cat.name + ".");
6 document .write ("
The dog's name is " +
pet.dog.name + ".");
</script>
</body>
</html>
Output:
5 The cat's name is Sylvester.
6 The dog's name is Lassie.

EXPLANATION

1
2

A new pet object is created with the Object() constructor.

The Object() constructor creates a cat object below the pet in the object hierarchy;
that is, a cat object subordinate to the pet object and also a property of it. You can-
not precede pet.cat with the keyword var because properties are never considered
variables.

The new object also has a property called name which is assigned a value, Sylvest-
er.

The Object() constructor creates an dog object below the pet in the object hierar-
chy; that is, a dog object subordinate to the pet object and also a property of it.
The name property for the cat object is displayed.

The name property for the dog object is displayed.

140 Chapter8 « Objects

8.2.5 Object Literals

When an object is created by assigning it a comma-separated list of properties enclosed
in curly braces, it is called an object literal. Each property consists of the property name
followed by a colon and the property value. An object literal can be embedded directly
in JavaScript code.

FORMAT
var object = { propertyl: value, property2: value };
Example:

var area = { length: 15, width: 5 };

EXAMPLE 8.8

<html>
<head><title>Object Literals</title>
</head>
<body bgcolor="yellow">
<script language = "javascript">
1 var car = {
2 make: "Honda",

year: 2002,
price: "30,000",
owner: "Henry Lee",
3 }i
4 var details=car.make + "
";
details += car.year + "
";
details += car.price + "
";
details += car.owner + "
";
document .write (details) ;
</script>
</body>
</html>

EXPLANATION

1 An object literal car is created and initialized.

2 The properties for the car object are assigned. Properties are separated from their
corresponding values with a colon and each property/value pair is separated by a
comma.

3 The object definition ends here.

4 The variable called details is assigned the properties of the car object for display.
The output is shown in Figure 8.8.

8.3 Manipulating Objects 141

Honda
2002
30,000
Henty Lee

Figure 8.8 Literal object properties. Output from Example 8.8.

8.3 Manipulating Objects

8.3.1 The with Keyword

The with keyword is used as a kind of shorthand for referencing an object’s properties or
methods.

The object specified as an argument to with becomes the default object for the dura-
tion of the block that follows. The properties and methods for the object can be used
without naming the object. (If a method is used, don’t forget to include the parentheses
after the method name.)

FORMAT

with (object) {
< properties used without the object name and dot>

}
Example:
with (employee) {

document .write (name, ssn, address) ;

}

EXAMPLE 8.9

<html>
<head><title>The with Keyword</title>
<script language = "javascript">
1 function book (title, author, publisher) {
2 this.title = title; // Properties

this.author = author;
this.publisher = publisher;
3 this.show = display; // Define a method

142

Chapter8 « Objects

EXAMPLE 8.9 (CONTINUED)

ul

10
11

function display (anybook) {
with(this) { // The with keyword
var info = "The title is " + title;
info += "\nThe author is " + author;
info += "\nThe publisher is " + publisher;
alert (info) ;

}

</script>

</head>

<body bgcolor="lightblue">
<script language = "javascript">

var childbook = new book("A Child's Garden of Verses",

"Robert Lewis Stevenson",

"Little Brown") ;
var adultbook = new book ("War and Peace",

"Leo Tolstoy",

"Penguin Books") ;
childbook.show(childbook); // Call method for child's book
adultbook.show(adultbook); // Call method for adult's book

</script>
</body>
</html>

EXPLANATION

1
2
3

The book constructor function is defined with its properties.

The book object is described with three properties: title, author, and publisher.
The book objects property is assigned the name of a function. This property will
serve as a method for the object.

A function called display is defined.

The with keyword will allow you to reference the properties of the object without
using the name of the object or the this keyword. (See “The Math Object” on
page 172 in Chapter 9.)

A variable called info is assigned the property values of a book object. The with
keyword allows you to specify the property name without a reference to the object
(and dot) preceding it.

The alert box displays the properties for a book object.

The constructor function is called and returns an instance of a new book object
called childbook.

The constructor function is called and returns an instance of another book object
called adultbook.

10 The show() method is called passing a reference to the childbook object.

11 The show() method is called passing a reference to the adultbook object.

8.3 Manipulating Objects 143

he with Statementsz - Mets

o File Edt “iew Go Bookmarks Tools ‘window Help

N @0 Q @ @ @ [fiesr/C ssambarbsdos

) B [Mail 4% Home J2 Radio [Wy] Netscape Q Search (@)
avase x

l’ The title ig A Child's Garden of Werses
] The authar iz Robert Lewis Stevenson
The publizher iz Little Brawvan

Figure 8.9 The childbook object and its properties.

The with Statements - Mets

. File Edit %iew Go Bookmarks Tools ‘Window Help

@Q O @ @ O |% file://C: /zambar50/doc
=

. @B, EMal 4 Home J2 Radio My] Metscape Cl Search

[JavaScript Application] x|
I’ The title iz W/ ar and Peace
e The author is Leo Tolstoyp

The publizher iz Penguin Book s

Figure 8.10 The adultbook object and ifs properties.

8.3.2 The for/in Loop

JavaScript provides the for/in loop, which can be used to iterate through a list of object
properties or array elements. The for/in loop reads: for each property in an object (or for
each element in an array) get the name of each property (element), in turn, and for each
of the properties (elements), execute the statements in the block that follows.

The for/in loop is a convenient mechanism for looping through the properties of an
object.

144

Chapter8 « Objects

FORMAT

for (var property_name in object) {

}

statements;

EXAMPLE 8.10

<html>
<head><title>User-defined objects</title>
<script language = "javascript">

function book(title, author, publisher)
this.title = title;
this.author = author;
this.publisher = publisher;

this.show=showProps; // Define a method for the object

}
function showProps (obj, name) {

// Function to show the object's properties

var result = "";
for (var prop in obj) {
result += name + "." + prop + " ="
obj[propl + "
";
}
return result;
}
</script>
</head>
<body bgcolor="lightblue">
<script language="javascript">
myBook = new book("JavaScript by Example",
"Prentice Hall");

4

"Ellie",

document .write ("
" + myBook.show(myBook, "myBook")) ;

</script>
</body>
</html>

EXPLANATION

The function called book will define the properties and methods for a book object.

1

The function is a template for the new object. An instance
will be created when this constructor is called.

of a new book object

This is the first property defined for the book object. The this keyword refers to

the current object.

A function name called showProps is assigned to a property of the object, thus cre-

ating a method for the object.

The function called showProps is defined, tasked to display all the properties of the

object.

8.3 Manipulating Objects 145

EXPLANATION (CONTINUED)

5 The special for/in loop executes a set of statements for each property of the object.

6 The name and value of each property is concatenated and assigned to a variable
called result. obj[prop] is used to key into each of the property values of the book
object.

7 The value of the variable result is sent back to the caller. Each time through the
loop, another property and value are displayed.

8 A new book object called myBook is created (instantiated).

9 The properties for the book object are shown in the browser window; see Figure
8.11. Notice how the method and its definition are displayed.

myBoolk.title = JavaScript by Example

myBook.author = Ellie

myBoolk.publisher = Prentice Hall

myBoolk.show = function showProps(ohj, name) { var result = ""; for (i in ohj) { result += name +"." +i+" =" + ohj[i] + "
'"; } return result; }

Figure 8.11 The book object’s properties.

8.3.3 Extending Objects with Prototypes

Object-oriented languages support a feature called inheritance, where one object can
inherit the properties of another. JavaScript implements inheritance with prototypes. As
of Netscape Navigator 3.0, it is possible to add properties to objects after they have been
created by using the prototype object.

JavaScript functions are automatically given an empty prototype object. If the function
serves as the constructor for an object, then the prototype object can be used to imple-
ment inheritance. When the properties are assigned to a given object by a constructor
function, the prototype object gets the same properties. Each time a new object of the
same class is created, that object also inherits the prototype object and all the same prop-
erties. The good news is that even after an object has been created, it can be extended
with new properties that will also become part of the prototype. Then any objects created
after that will automatically inherit the new properties.

What Is a Class? In object-oriented languages, the object’s data describes the prop-
erties. The object, along with its properties and methods, is bundled up into a container
called a class, and one class can inherit from another, and so on. Even though JavaScript
doesn’t have a class mechanism per se, it mimics the class concept with the constructor
and its prototype object.

Each JavaScript class has a prototype object and one set of properties. Any objects cre-
ated in the class will inherit the prototype properties. Let’s say we define a constructor
function called Employee() with a set of properties. The prototype object has all the same
properties. The Employee() constructor function represents a class. The constructor is

146 Chapter8 « Objects

called and instantiates an object called janitor, and then the constructor is called again
and instantiates another object called manager, and so on. Each instance of the
Employee() class automatically inherits all the properties defined for the Employee
through its prototype.

After an object has been created, new properties can be added with the prototype
property. This is how JavaScript implements inheritance.

EXAMPLE 8.11

<html>
<head><title>User-defined objects and Inheritance</title>
<script language = "javascript">

1 function Book(title, author, publisher) { // The Book class

this.title = title;
this.author = author;
this.publisher = publisher;
this.show=showProps;
}
2 function showProps (obj,name) {
var result = "";
for (var i in obj){
result += name + "." + i + " = " + obj[i] + "
";
}
return result;
}
</script>
</head>
<body bgcolor="1lightblue">
<script language="javascript">
// Add a new function
3 function lastEdition() {
this.latest=prompt ("Enter the latest edition for
"+this.title,"");
return (this.latest);
}
// Add a new property with prototype
4 Book.prototype.edition=lastEdition;
5 var myBook=new Book("JavaScript by Example", "Ellie",
"Prentice Hall");
// Define a new method
document .write ("
" + myBook.show (myBook, "myBook") +"
") ;
6 document .write("The latest edition is "+ myBook.edition()+"
");
</script>
</body>
</html>

8.3 Manipulating Objects 147

EXPLANATION

1 The function called Book defines the properties and methods for a Book object.
Book is a JavaScript class. Each object has a prototype whose properties it inherits.
An instance of a new Book object will inherit all of these properties.

2 A function called showProps is defined. It uses the special for loop to iterate
through all the properties of an object. It will be used to create a method for the
Book object, called show ().

3 A function called lastEdition() is defined. It returns the latest edition of the book.

4 A new property is given to the Book object using the prototype property, followed
by the property name, edition. This property is assigned the name of a function
called lastEdition, thus creating a new method for the Book class.

5 A new Book object, called myBook, is created. It has inherited all of the original
properties of the Book class, plus the new property defined by the prototype prop-
erty, called edition.

6 The new method is called for the myBook object.

Extending a JavaScript Object. Since all objects have the prototype object, it is
possible to extend the properties of a JavaScript built-in object, just as we did for a user-
defined object. (See Chapter 9, “JavaScript Core Objects.”)

EXAMPLE 8.12

<html><head><title>Prototypes</title>

<script language = "javascript">
// Customize String Functions
1 function uc() {
var str=this.big() ;
3 return(str.toUpperCase()) ;
}
4 function 1lc() {
5 var str=this.small() ;
6 return(str.toLowerCase()) ;
}
7 String.prototype.bigUpper=uc;
8 String.prototype.smallLower=1c;
9 var string="This Is a Test STRING.";
10 string=string.bigUpper();
document .write (string+"
") ;
11 document .write (string.bigUpper()+"
") ;
12 document .write (string.smallLower()+"
") ;
</script>
</head>

<body bgcolor="1lightblue"></body>
</html>

148

Chapter8 « Objects

EXPLANATION

1
2

10

11

12

A function called uc is defined. It will manipulate a String object.

The big() method is an HTML method that will increase the font size (one size
larger than the current font) for the String object.

The string will be returned with a larger font and all letters in uppercase.
A function called Ic is defined. It will also manipulate the String object.

The small() method is an HTML method that will decrease the font size (one size
smaller than the current font) for the String object.

The string will be returned with a smaller font and all letters in lowercase.

The function uc is assigned to the String.prototype.bigUpper property, creating a
new method for the String object.

The function Ic is assigned to the String.prototype.smallLower property, creating
another new method for the String object.

This is the String object that will be manipulated by the new methods created by
the prototype property.

When the string.bigUpper() method is called, the string is converted to uppercase
with all letters in a bigger font.

The string.bigUpper () method is called again, creating a larger string all in capital
letters.

When the string.smallLower() method is called, the string is converted to lower-
case with all letters in a smaller font. See output in Figure 8.12.

THIS IS A TEST STRING.

THIS IS A TEST STRING.
this 15 a test string.

Figure 8.12

Extending properties to a built-in class. Output from Example 8.12.

Exercises

149

EXERCISES

1. Create a circle object and a method that will calculate its circumference.

2. Write a function that will create a clock object.

a.

b.

It will have three properties: seconds, minutes, and hours.
Write two methods: setTime() to set the current time and displayTime() to
display the time.

. The user will be prompted to select either a.m., p.m., or military time. The

value he chooses will be passed as an argument to the display) method.

. The output will be either

14:10:26 Or 2:10:26

depending on what argument was passed to the display() method.

