

29

The Seam
Model

Chapter 4

The Seam Model

One of the things that nearly everyone notices when they try to write tests for
existing code is just how poorly suited code is to testing. It isn’t just particular
programs or languages. In general, programming languages just don’t seem to
support testing very well. It seems that the only ways to end up with an easily
testable program are to write tests as you develop it or spend a bit of time trying
to “design for testability.” There is a lot of hope for the former approach, but if
much of the code in the field is evidence, the latter hasn’t been very successful.

One thing that I’ve noticed is that, in trying to get code under test, I’ve
started to think about code in a rather different way. I could just consider this
some private quirk, but I’ve found that this different way of looking at code
helps me when I work in new and unfamiliar programming languages. Because
I won’t be able to cover every programming language in this book, I’ve decided
to outline this view here in the hope that it helps you as well as it helps me.

A Huge Sheet of Text

When I first started programming, I was lucky that I started late enough to have
a machine of my own and a compiler to run on that machine; many of my
friends starting programming in the punch-card days. When I decided to study
programming in school, I started working on a terminal in a lab. We could
compile our code remotely on a DEC VAX machine. There was a little account-
ing system in place. Each compile cost us money out of our account, and we
had a fixed amount of machine time each term.

At that point in my life, a program was just a listing. Every couple of hours,
I’d walk from the lab to the printer room, get a printout of my program and
scrutinize it, trying to figure out what was right or wrong. I didn’t know enough
to care much about modularity. We had to write modular code to show that we
could do it, but at that point I really cared more about whether the code was

Chapter04.fm Page 29 Monday, August 23, 2004 1:34 PM

30

T

HE

 S

EAM

 M

ODEL

Seams

going to produce the right answers. When I got around to writing object-ori-
ented code, the modularity was rather academic. I wasn’t going to be swapping
in one class for another in the course of a school assignment. When I got out in
the industry, I started to care a lot about those things, but in school, a program
was just a listing to me, a long set of functions that I had to write and under-
stand one by one.

This view of a program as a listing seems accurate, at least if we look at how
people behave in relation to programs that they write. If we knew nothing
about what programming was and we saw a room full of programmers work-
ing, we might think that they were scholars inspecting and editing large impor-
tant documents. A program can seem like a large sheet of text. Changing a little
text can cause the meaning of the whole document to change, so people make
those changes carefully to avoid mistakes.

Superficially, that is all true, but what about modularity? We are often told it
is better to write programs that are made of small reusable pieces, but how
often are small pieces reused independently? Not very often. Reuse is tough.
Even when pieces of software look independent, they often depend upon each
other in subtle ways.

Seams

When you start to try to pull out individual classes for unit testing, often you
have to break a lot of dependencies. Interestingly enough, you often have a lot
of work to do, regardless of how “good” the design is. Pulling classes out of
existing projects for testing really changes your idea of what “good” is with
regard to design. It also leads you to think of software in a completely different
way. The idea of a program as a sheet of text just doesn’t cut it anymore. How
should we look at it? Let’s take a look at an example, a function in C++.

bool CAsyncSslRec::Init()
{
 if (m_bSslInitialized) {
 return true;
 }
 m_smutex.Unlock();
 m_nSslRefCount++;

 m_bSslInitialized = true;

 FreeLibrary(m_hSslDll1);
 m_hSslDll1=0;
 FreeLibrary(m_hSslDll2);

Chapter04.fm Page 30 Monday, August 23, 2004 1:34 PM

S

EAMS

31

Seams

 m_hSslDll2=0;

 if (!m_bFailureSent) {
 m_bFailureSent=TRUE;
 PostReceiveError(SOCKETCALLBACK, SSL_FAILURE);
 }

 CreateLibrary(m_hSslDll1,”syncesel1.dll”);
 CreateLibrary(m_hSslDll2,”syncesel2.dll”);

 m_hSslDll1->Init();
 m_hSslDll2->Init();

 return true;
}

It sure looks like just a sheet of text, doesn’t it? Suppose that we want to run
all of that method except for this line:

 PostReceiveError(SOCKETCALLBACK, SSL_FAILURE);

How would we do that?
It’s easy, right? All we have to do is go into the code and delete that line.
Okay, let’s constrain the problem a little more. We want to avoid executing

that line of code because

PostReceiveError

 is a global function that communi-
cates with another subsystem, and that subsystem is a pain to work with
under test. So the problem becomes, how do we execute the method without
calling

PostReceiveError

 under test? How do we do that and still allow the call
to

PostReceiveError

 in production?
To me, that is a question with many possible answers, and it leads to the idea

of a seam.
Here’s the definition of a seam. Let’s take a look at it and then some examples.

Is there a seam at the call to

PostReceiveError

? Yes. We can get rid of the
behavior there in a couple of ways. Here is one of the most straightforward
ones.

PostReceiveError

 is a global function, it isn’t part of the

CAsynchSslRec

 class.
What happens if we add a method with the exact same signature to the

CAsynch-
SslRec

 class?

class CAsyncSslRec
{
 ...

virtual void PostReceiveError(UINT type, UINT errorcode);
 ...
};

Seam

A seam is a place where you can alter behavior in your program without editing in
that place.

Chapter04.fm Page 31 Monday, August 23, 2004 1:34 PM

32

T

HE

 S

EAM

 M

ODEL

Seams

In the implementation file, we can add a body for it like this:

void CAsyncSslRec::PostReceiveError(UINT type, UINT errorcode)
{
 ::PostReceiveError(type, errorcode);
}

That change should preserve behavior. We are using this new method to dele-
gate to the global

PostReceiveError

 function using C++’s scoping operator (::). We
have a little indirection there, but we end up calling the same global function.

Okay, now what if we subclass the

CAsyncSslRec

 class and override the

PostReceiveError

 method?

class TestingAsyncSslRec : public CAsyncSslRec
{

virtual void PostReceiveError(UINT type, UINT errorcode)
 {
 }
};

If we do that and go back to where we are creating our

CAsyncSslRec

 and cre-
ate a

TestingAsyncSslRec

 instead, we’ve effectively nulled out the behavior of the
call to

PostReceiveError

 in this code:

bool CAsyncSslRec::Init()
{
 if (m_bSslInitialized) {
 return true;
 }
 m_smutex.Unlock();
 m_nSslRefCount++;

 m_bSslInitialized = true;

 FreeLibrary(m_hSslDll1);
 m_hSslDll1=0;
 FreeLibrary(m_hSslDll2);
 m_hSslDll2=0;

 if (!m_bFailureSent) {
 m_bFailureSent=TRUE;

 PostReceiveError(SOCKETCALLBACK, SSL_FAILURE);

 }

 CreateLibrary(m_hSslDll1,"syncesel1.dll");
 CreateLibrary(m_hSslDll2,"syncesel2.dll");

 m_hSslDll1->Init();
 m_hSslDll2->Init();

 return true;
}

Chapter04.fm Page 32 Monday, August 23, 2004 1:34 PM

S

EAM

 T

YPES

33

Seam Types

Now we can write tests for that code without the nasty side effect.
This seam is what I call an

object seam

. We were able to change the method
that is called without changing the method that calls it.

Object seams

 are avail-
able in object-oriented languages, and they are only one of many different kinds
of seams.

Why seams? What is this concept good for?
One of the biggest challenges in getting legacy code under test is breaking

dependencies. When we are lucky, the dependencies that we have are small and
localized; but in pathological cases, they are numerous and spread out through-
out a code base. The seam view of software helps us see the opportunities that
are already in the code base. If we can replace behavior at seams, we can selec-
tively exclude dependencies in our tests. We can also run other code where
those dependencies were if we want to sense conditions in the code and write
tests against those conditions. Often this work can help us get just enough tests
in place to support more aggressive work.

Seam Types

The types of seams available to us vary among programming languages. The
best way to explore them is to look at all of the steps involved in turning the
text of a program into running code on a machine. Each identifiable step
exposes different kinds of seams.

Preprocessing Seams

In most programming environments, program text is read by a compiler. The
compiler then emits object code or bytecode instructions. Depending on the lan-
guage, there can be later processing steps, but what about earlier steps?

Only a couple of languages have a build stage before compilation. C and
C++ are the most common of them.

In C and C++, a macro preprocessor runs before the compiler. Over the
years, the macro preprocessor has been cursed and derided incessantly. With it,
we can take lines of text as innocuous looking as this:

TEST(getBalance,Account)
{
 Account account;
 LONGS_EQUAL(0, account.getBalance());
}

and have them appear like this to the compiler.

Chapter04.fm Page 33 Monday, August 23, 2004 1:34 PM

34

T

HE

 S

EAM

 M

ODEL

Seam Types

 class AccountgetBalanceTest : public Test
 { public: AccountgetBalanceTest () : Test ("getBalance" "Test") {}
 void run (TestResult& result_); }
 AccountgetBalanceInstance;
 void AccountgetBalanceTest::run (TestResult& result_)
{
 Account account;
{ result_.countCheck();
 long actualTemp = (account.getBalance());
 long expectedTemp = (0);
 if ((expectedTemp) != (actualTemp))
{ result_.addFailure (Failure (name_, "c:\\seamexample.cpp", 24,
StringFrom(expectedTemp),
StringFrom(actualTemp))); return; } }

}

We can also nest code in conditional compilation statements like this to sup-
port debugging and different platforms (aarrrgh!):

...
m_pRtg->Adj(2.0);

#ifdef DEBUG
#ifndef WINDOWS
 { FILE *fp = fopen(TGLOGNAME,"w");
 if (fp) { fprintf(fp,"%s", m_pRtg->pszState); fclose(fp); }}
#endif

m_pTSRTable->p_nFlush |= GF_FLOT;
#endif

...

It’s not a good idea to use excessive preprocessing in production code
because it tends to decrease code clarity. The conditional compilation directives
(

#ifdef

,

#ifndef

,

#if

, and so on) pretty much force you to maintain several differ-
ent programs in the same source code. Macros (defined with

#define

) can be
used to do some very good things, but they just do simple text replacement. It is
easy to create macros that hide terribly obscure bugs.

These considerations aside, I’m actually glad that C and C++ have a preproces-
sor because the preprocessor gives us more seams. Here is an example. In a C pro-
gram, we have dependencies on a library routine named

db_update

. The

db_update

function talks directly to a database. Unless we can substitute in another imple-
mentation of the routine, we can’t sense the behavior of the function.

#include <DFHLItem.h>
#include <DHLSRecord.h>

Chapter04.fm Page 34 Monday, August 23, 2004 1:34 PM

S

EAM

 T

YPES

35

Seam Types

extern int db_update(int, struct DFHLItem *);

void account_update(
 int account_no, struct DHLSRecord *record, int activated)
{
 if (activated) {
 if (record->dateStamped && record->quantity > MAX_ITEMS) {
 db_update(account_no, record->item);
 } else {
 db_update(account_no, record->backup_item);
 }
 }
 db_update(MASTER_ACCOUNT, record->item);
}

We can use preprocessing seams to replace the calls to

db_update

. To do this,
we can introduce a header file called

localdefs.h

.

#include <DFHLItem.h>
#include <DHLSRecord.h>

extern int db_update(int, struct DFHLItem *);

#include "localdefs.h"

void account_update(
 int account_no, struct DHLSRecord *record, int activated)
{
 if (activated) {
 if (record->dateStamped && record->quantity > MAX_ITEMS) {
 db_update(account_no, record->item);
 } else {
 db_update(account_no, record->backup_item);
 }
 }
 db_update(MASTER_ACCOUNT, record->item);
}

Within it, we can provide a definition for

db_update

 and some variables that
will be helpful for us:

#ifdef TESTING
...
struct DFHLItem *last_item = NULL;
int last_account_no = -1;

#define db_update(account_no,item)\
 {last_item = (item); last_account_no = (account_no);}
...
#endif

Chapter04.fm Page 35 Monday, August 23, 2004 1:34 PM

36

T

HE

 S

EAM

 M

ODEL

Seam Types

With this replacement of

db_update

 in place, we can write tests to verify that

db_update

 was called with the right parameters. We can do it because the

#include

directive of the C preprocessor gives us a seam that we can use to replace text
before it is compiled.

Preprocessing seams are pretty powerful. I don’t think I’d really want a pre-
processor for Java and other more modern languages, but it is nice to have this
tool in C and C++ as compensation for some of the other testing obstacles they
present.

I didn’t mention it earlier, but there is something else that is important to
understand about seams: Every seam has an

enabling point

. Let’s look at the def-
inition of a seam again:

When you have a seam, you have a place where behavior can change. We
can’t really go to that place and change the code just to test it. The source code
should be the same in both production and test. In the previous example, we
wanted to change the behavior at the text of the

db_update

 call. To exploit that
seam, you have to make a change someplace else. In this case, the enabling
point is a preprocessor define named

TESTING

. When

TESTING

 is defined, the

local-
defs.h

file defines macros that replace calls to

db_update

 in the source file.

Link Seams

In many language systems, compilation isn’t the last step of the build process.
The compiler produces an intermediate representation of the code, and that rep-
resentation contains calls to code in other files. Linkers combine these represen-
tations. They resolve each of the calls so that you can have a complete program
at runtime.

In languages such as C and C++, there really is a separate linker that does the
operation I just described. In Java and similar languages, the compiler does the
linking process behind the scenes. When a source file contains an

import

 state-
ment, the compiler checks to see if the imported class really has been compiled.
If the class hasn’t been compiled, it compiles it, if necessary, and then checks to
see if all of its calls will really resolve correctly at runtime.

Seam

A seam is a place where you can alter behavior in your program without editing in
that place.

Enabling Point

Every seam has an enabling point, a place where you can make the decision to use
one behavior or another.

Chapter04.fm Page 36 Monday, August 23, 2004 1:34 PM

S

EAM

 T

YPES

37

Seam Types

Regardless of which scheme your language uses to resolve references, you
can usually exploit it to substitute pieces of a program. Let’s look at the Java
case. Here is a little class called FitFilter:

package fitnesse;

import fit.Parse;
import fit.Fixture;

import java.io.*;
import java.util.Date;

import java.io.*;
import java.util.*;

public class FitFilter {

 public String input;
 public Parse tables;
 public Fixture fixture = new Fixture();
 public PrintWriter output;

 public static void main (String argv[]) {
 new FitFilter().run(argv);
 }

 public void run (String argv[]) {
 args(argv);
 process();
 exit();
 }

 public void process() {
 try {
 tables = new Parse(input);
 fixture.doTables(tables);
 } catch (Exception e) {
 exception(e);
 }
 tables.print(output);
 }
 ...
}

In this file, we import fit.Parse and fit.Fixture. How do the compiler and the
JVM find those classes? In Java, you can use a classpath environment variable
to determine where the Java system looks to find those classes. You can actually
create classes with the same names, put them into a different directory, and

Chapter04.fm Page 37 Monday, August 23, 2004 1:34 PM

38 THE SEAM MODEL

Seam Types

alter the classpath to link to a different fit.Parse and fit.Fixture. Although it
would be confusing to use this trick in production code, when you are testing, it
can be a pretty handy way of breaking dependencies.

This sort of dynamic linking can be done in many languages. In most, there
is some way to exploit link seams. But not all linking is dynamic. In many older
languages, nearly all linking is static; it happens once after compilation.

Many C and C++ build systems perform static linking to create executables.
Often the easiest way to use the link seam is to create a separate library for any
classes or functions you want to replace. When you do that, you can alter your
build scripts to link to those rather than the production ones when you are test-
ing. This can be a bit of work, but it can pay off if you have a code base that is
littered with calls to a third-party library. For instance, imagine a CAD applica-
tion that contains a lot of embedded calls to a graphics library. Here is an
example of some typical code:

void CrossPlaneFigure::rerender()
{
 // draw the label
 drawText(m_nX, m_nY, m_pchLabel, getClipLen());
 drawLine(m_nX, m_nY, m_nX + getClipLen(), m_nY);
 drawLine(m_nX, m_nY, m_nX, m_nY + getDropLen());
 if (!m_bShadowBox) {
 drawLine(m_nX + getClipLen(), m_nY,
 m_nX + getClipLen(), m_nY + getDropLen());
 drawLine(m_nX, m_nY + getDropLen(),
 m_nX + getClipLen(), m_nY + getDropLen());
 }

 // draw the figure
 for (int n = 0; n < edges.size(); n++) {
 ...
 }

 ...
}

This code makes many direct calls to a graphics library. Unfortunately, the
only way to really verify that this code is doing what you want it to do is to

Suppose we wanted to supply a different version of the Parse class for testing. Where
would the seam be?

The seam is the new Parse call in the process method.

Where is the enabling point?

The enabling point is the classpath.

Chapter04.fm Page 38 Monday, August 23, 2004 1:34 PM

SEAM TYPES 39

Seam Types

look at the computer screen when figures are redrawn. In complicated code,
that is pretty error prone, not to mention tedious. An alternative is to use link
seams. If all of the drawing functions are part of a particular library, you can
create stub versions that link to the rest of the application. If you are interested
in only separating out the dependency, they can be just empty functions:

void drawText(int x, int y, char *text, int textLength)
{
}

void drawLine(int firstX, int firstY, int secondX, int secondY)
{
}

If the functions return values, you have to return something. Often a code
that indicates success or the default value of a type is a good choice:

int getStatus()
{
 return FLAG_OKAY;
}

The case of a graphics library is a little atypical. One reason that it is a good
candidate for this technique is that it is almost a pure “tell” interface. You issue
calls to functions to tell them to do something, and you aren’t asking for much
information back. Asking for information is difficult because the defaults often
aren’t the right thing to return when you are trying to exercise your code.

Separation is often a reason to use a link seam. You can do sensing also; it
just requires a little more work. In the case of the graphics library we just faked,
we could introduce some additional data structures to record calls:

std::queue<GraphicsAction> actions;

void drawLine(int firstX, int firstY, int secondX, int secondY)
{
 actions.push_back(GraphicsAction(LINE_DRAW,
 firstX, firstY, secondX, secondY);
}

With these data structures, we can sense the effects of a function in a test:

TEST(simpleRender,Figure)
{
 std::string text = "simple";
 Figure figure(text, 0, 0);

 figure.rerender();
 LONGS_EQUAL(5, actions.size());

Chapter04.fm Page 39 Monday, August 23, 2004 1:34 PM

40 THE SEAM MODEL

Seam Types

 GraphicsAction action;
 action = actions.pop_front();
 LONGS_EQUAL(LABEL_DRAW, action.type);

 action = actions.pop_front();
 LONGS_EQUAL(0, action.firstX);
 LONGS_EQUAL(0, action.firstY);
 LONGS_EQUAL(text.size(), action.secondX);
}

The schemes that we can use to sense effects can grow rather complicated,
but it is best to start with a very simple scheme and allow it to get only as com-
plicated as it needs to be to solve the current sensing needs.

The enabling point for a link seam is always outside the program text. Some-
times it is in a build or a deployment script. This makes the use of link seams
somewhat hard to notice.

Object Seams

Object seams are pretty much the most useful seams available in object-oriented
programming languages. The fundamental thing to recognize is that when we
look at a call in an object-oriented program, it does not define which method
will actually be executed. Let’s look at a Java example:

cell.Recalculate();

When we look at this code, it seems that there has to be a method named
Recalculate that will execute when we make that call. If the program is going to
run, there has to be a method with that name; but the fact is, there can be more
than one:

Usage Tip

If you use link seams, make sure that the difference between test and production envi-
ronments is obvious.

Chapter04.fm Page 40 Monday, August 23, 2004 1:34 PM

SEAM TYPES 41

Seam Types

Figure 4.1 Cell hierarchy.

Which method will be called in this line of code?

cell.Recalculate();

Without knowing what object cell points to, we just don’t know. It could be
the Recalculate method of ValueCell or the Recalculate method of FormulaCell. It
could even be the Recalculate method of some other class that doesn’t inherit
from Cell (if that’s the case, cell was a particularly cruel name to use for that
variable!). If we can change which Recalculate is called in that line of code with-
out changing the code around it, that call is a seam.

In object-oriented languages, not all method calls are seams. Here is an
example of a call that isn’t a seam:

public class CustomSpreadsheet extends Spreadsheet
{
 public Spreadsheet buildMartSheet() {
 ...
 Cell cell = new FormulaCell(this, "A1", "=A2+A3");
 ...
 cell.Recalculate();
 ...
 }
 ...
}

In this code, we’re creating a cell and then using it in the same method. Is the
call to Recalculate an object seam? No. There is no enabling point. We can’t
change which Recalculate method is called because the choice depends on the
class of the cell. The class of the cell is decided when the object is created, and
we can’t change it without modifying the method.

What if the code looked like this?

{abstract}
Cell

+ Recalculate()

ValueCell

+ Recalculate()

FormulaCell

+ Recalculate()

Chapter04.fm Page 41 Monday, August 23, 2004 1:34 PM

42 THE SEAM MODEL

Seam Types

public class CustomSpreadsheet extends Spreadsheet
{
 public Spreadsheet buildMartSheet(Cell cell) {
 ...
 cell.Recalculate();
 ...
 }
 ...
}

Is the call to cell.Recalculate in buildMartSheet a seam now? Yes. We can cre-
ate a CustomSpreadsheet in a test and call buildMartSheet with whatever kind of
Cell we want to use. We’ll have ended up varying what the call to cell.Recalcu-
late does without changing the method that calls it.

Where is the enabling point?
In this example, the enabling point is the argument list of buildMartSheet.

We can decide what kind of an object to pass and change the behavior of
Recalculate any way that we want to for testing.

Okay, most object seams are pretty straightforward. Here is a tricky one. Is
there an object seam at the call to Recalculate in this version of buildMartSheet?

public class CustomSpreadsheet extends Spreadsheet
{
 public Spreadsheet buildMartSheet(Cell cell) {
 ...
 Recalculate(cell);
 ...
 }

 private static void Recalculate(Cell cell) {
 ...
 }

 ...
}

The Recalculate method is a static method. Is the call to Recalculate in
buildMartSheet a seam? Yes. We don’t have to edit buildMartSheet to change
behavior at that call. If we delete the keyword static on Recalculate and make
it a protected method instead of a private method, we can subclass and over-
ride it during test:

public class CustomSpreadsheet extends Spreadsheet
{
 public Spreadsheet buildMartSheet(Cell cell) {
 ...
 Recalculate(cell);
 ...
 }

Chapter04.fm Page 42 Monday, August 23, 2004 1:34 PM

SEAM TYPES 43

Seam Types

 protected void Recalculate(Cell cell) {
 ...
 }

 ...
}

public class TestingCustomSpreadsheet extends CustomSpreadsheet {
 protected void Recalculate(Cell cell) {
 ...
 }
}

Isn’t this all rather indirect? If we don’t like a dependency, why don’t we just
go into the code and change it? Sometimes that works, but in particularly nasty
legacy code, often the best approach is to do what you can to modify the code
as little as possible when you are getting tests in place. If you know the seams
that your language offers and how to use them, you can often get tests in place
more safely than you could otherwise.

The seams types I’ve shown are the major ones. You can find them in many
programming languages. Let’s take a look at the example that led off this chap-
ter again and see what seams we can see:

bool CAsyncSslRec::Init()
{
 if (m_bSslInitialized) {
 return true;
 }
 m_smutex.Unlock();
 m_nSslRefCount++;

 m_bSslInitialized = true;

 FreeLibrary(m_hSslDll1);
 m_hSslDll1=0;
 FreeLibrary(m_hSslDll2);
 m_hSslDll2=0;

 if (!m_bFailureSent) {
 m_bFailureSent=TRUE;
 PostReceiveError(SOCKETCALLBACK, SSL_FAILURE);
 }

 CreateLibrary(m_hSslDll1,"syncesel1.dll");
 CreateLibrary(m_hSslDll2,"syncesel2.dll");

 m_hSslDll1->Init();
 m_hSslDll2->Init();

return true;
}

Chapter04.fm Page 43 Monday, August 23, 2004 1:34 PM

44 THE SEAM MODEL

Seam Types

What seams are available at the PostReceiveError call? Let’s list them.

1. PostReceiveError is a global function, so we can easily use the link seam
there. We can create a library with a stub function and link to it to get
rid of the behavior. The enabling point would be our makefile or some
setting in our IDE. We’d have to alter our build so that we would link
to a testing library when we are testing and a production library when
we want to build the real system.

2. We could add a #include statement to the code and use the preprocessor
to define a macro named PostReceiveError when we are testing. So, we
have a preprocessing seam there. Where is the enabling point? We can
use a preprocessor define to turn the macro definition on or off.

3. We could also declare a virtual function for PostRecieveError like we did
at the beginning of this chapter, so we have an object seam there also.
Where is the enabling point? In this case, the enabling point is the place
where we decide to create an object. We can create either an CAsyncSsl-
Rec object or an object of some testing subclass that overrides PostRe-
cieveError.

It is actually kind of amazing that there are so many ways to replace the
behavior at this call without editing the method:

bool CAsyncSslRec::Init()
{

...
 if (!m_bFailureSent) {
 m_bFailureSent=TRUE;
 PostReceiveError(SOCKETCALLBACK, SSL_FAILURE);
 }
 ...

 return true;
}

It is important to choose the right type of seam when you want to get pieces
of code under test. In general, object seams are the best choice in object-oriented
languages. Preprocessing seams and link seams can be useful at times but they
are not as explicit as object seams. In addition, tests that depend upon them can
be hard to maintain. I like to reserve preprocessing seams and link seams for
cases where dependencies are pervasive and there are no better alternatives.

When you get used to seeing code in terms of seams, it is easier to see how to
test things and to see how to structure new code to make testing easier.

Chapter04.fm Page 44 Monday, August 23, 2004 1:34 PM

