
45

In the first two chapters you learned about the difference between machine lan-
guage and a programming language. You have also learned how PL/SQL is dif-

ferent from SQL and about the PL/SQL basic block structure. This is similar to
learning the history behind a foreign language and in what context it is used. In
order to use the PL/SQL language, you will have to learn the key words, what
they mean, and when and how to use them. First, you will encounter the differ-
ent types of key words and then their full syntax. Finally, in this chapter, you will
expand on simple block structure with an exploration of scope and nesting
blocks.

CHAPTER OBJECTIVES

In this Chapter, you will learn about:

✔ PL/SQL Programming Fundamentals Page 46

C H A P T E R 3

GENERAL
PROGRAMMING

LANGUAGE
FUNDAMENTALS

LAB
3.1

46 Lab 3.1: PL/SQL Programming Fundamentals

L A B 3 . 1

PL/SQL PROGRAMMING
FUNDAMENTALS

LAB OBJECTIVES

After this Lab, you will be able to:

✔ Make Use of PL/SQL Language Components
✔ Make Use of PL/SQL Variables
✔ Handle PL/SQL Reserved Words
✔ Make Use of Identifiers in PL/SQL
✔ Make Use of Anchored Data types
✔ Declare and Initialize Variables
✔ Understand the Scope of a Block, Nested Blocks, and Labels

In most languages, you have only two sets of characters: numbers and letters.
Some languages, such as Hebrew or Tibetan, have specific characters for vowels
that are not placed in line with consonants. Additionally, other languages, such
as Japanese, have three character sets: one for words originally taken from the
Chinese language, another set for native Japanese words, and then a third for
other foreign words. In order to speak any foreign language, you have to begin by
learning these character sets. Then you progress to learn how to make words
from these character sets. Finally, you learn the parts of speech and you can
begin talking. You can think of PL/SQL as being a more complex language be-
cause it has many character types and, additionally, many types of words or lexi-
cal units that are made from these character sets. Once you learn these, you can
progress to learn the structure of the PL/SQL language.

CHARACTER TYPES

The PL/SQL engine accepts four types of characters: letters, digits, symbols (*, +, -,
=, etc.), and white space. When elements from one or more of these character
types are joined together, they will create a lexical unit (these lexical units can be

a combination of character types). The lexical units are the words of the PL/SQL
language. First you need to learn the PL/SQL vocabulary, and then you will move
on to the syntax, or grammar. Soon you can start talking in PL/SQL.

Although PL/SQL can be considered a language, don’t try talking to your
fellow programmers in PL/SQL. For example, at a dinner table of pro-
grammers, if you say,“BEGIN, LOOP FOR PEAS IN PLATE EXECUTE
EAT PEAS, END LOOP, EXCEPTION WHEN BROCCOLI FOUND EXE-
CUTE SEND TO PRESIDENT BUSH, END EAT PEAS,” you may not be
considered human.This type of language is reserved for Terminators and
the like.

LEXICAL UNITS

A language such as English contains different parts of speech. Each part of
speech, such as a verb or noun, behaves in a different way and must be used ac-
cording to specific rules. Likewise, a programming language has lexical units that
are the building blocks of the language. PL/SQL lexical units fall within one of
the following five groups:

1. Identifiers. Identifiers must begin with a letter and may be up to 30
characters long. See a PL/SQL manual for a more detailed list of re-
strictions; generally, if you stay with characters, numbers, and “ ”, and
avoid reserved words, you will not run into problems.

2. Reserved words. Reserved words are words that PL/SQL saves for its own
use (e.g., BEGIN, END, SELECT).

3. Delimiters. These are characters that have special meaning to PL/SQL,
such as arithmetic operators and quotation marks.

4. Literals. A literal is any value (character, numeric, or Boolean
[true/false]) that is not an identifier. 123, “Declaration of Indepen-
dence,” and FALSE are examples of literals.

5. Comments. These can be either single-line comments (i.e., --) or
multiline comments (i.e., /* */).

See Appendix B, “PL/SQL Formatting Guide,” for details on formatting.

In the following exercises, you will practice putting these units together.

LAB 3.1 EXERCISES

3.1.1 MAKE USE OF PL/SQL LANGUAGE COMPONENTS

Now that you have the character types and the lexical units, it is equivalent to
knowing the alphabet and how to spell out words.

LAB
3.1

Lab 3.1: PL/SQL Programming Fundamentals 47

a) Why does PL/SQL have so many different types of characters?
What are they used for?

b) What would be the equivalent of a verb and a noun in English
in PL/SQL? Do you speak PL/SQL?

3.1.2 MAKE USE OF PL/SQL VARIABLES

Variables may be used to hold a temporary value.

Syntax : <variable-name> <data type> [optional default
assignment]

Variables may also be known as identifiers. There are some restrictions that
you need to be familiar with:Variables must begin with a letter and may be up
to 30 characters long. Consider the following example:

� FOR EXAMPLE

This example contains a list of valid identifiers:

v_student_id
v_last_name
V_LAST_NAME
apt_#

It is important to note that the identifiers v_last_name and V_LAST_NAME
are considered identical because PL/SQL is not case sensitive.

Next, consider an example of illegal identifiers:

� FOR EXAMPLE

X+Y
1st_year
student ID

Identifier X+Y is illegal because it contains the “+” sign.This sign is reserved by
PL/SQL to denote an addition operation, and it is referred to as a mathematical

LAB
3.1

48 Lab 3.1: PL/SQL Programming Fundamentals

symbol. Identifier, 1st_year is illegal because it starts with a number. Finally,
identifier student ID is illegal because it contains a space.

Next, consider another example:

� FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE

first&last_names VARCHAR2(30);
BEGIN

first&last_names := 'TEST NAME';
DBMS_OUTPUT.PUT_LINE(first&last_names);

END;

In this example, you declare a variable called first&last_names. Next, you
assign a value to this variable and display this value on the screen.When run,
the example produces the following output:

Enter value for last_names: Elena
old 2: first&last_names VARCHAR2(30);
new 2: firstElena VARCHAR2(30);
Enter value for last_names: Elena
old 4: first&last_names := 'TEST NAME';
new 4: firstElena := 'TEST NAME';
Enter value for last_names: Elena
old 5: DBMS_OUTPUT.PUT_LINE(first&last_names);
new 5: DBMS_OUTPUT.PUT_LINE(firstElena);
TEST NAME
PL/SQL procedure successfully completed.

Consider the output produced. Because there is an ampersand (&) present in
the name of the variable first&last_names, the portion of the variable is
considered to be a substitution variable (you learned about substitution vari-
ables in Chapter 2). In other words, the portion of the variable name after the
ampersand (last_names) is treated by the PL/SQL compiler as a substitu-
tion variable. As a result, you are prompted to enter the value for the
last_names variable every time the compiler encounters it.

It is important to realize that while this example does not produce any syntax
errors, the variable first&last_names is still an invalid identifier because
the ampersand character is reserved for substitution variables. To avoid this
problem, change the name of the variable from first&last_names to
first_and_last_names.Therefore, you should use an ampersand sign in the
name of a variable only when you use it as a substitution variable in your program.

LAB
3.1

Lab 3.1: PL/SQL Programming Fundamentals 49

� FOR EXAMPLE

-- ch03_1a.pls
SET SERVEROUTPUT ON
DECLARE

v_name VARCHAR2(30);
v_dob DATE;
v_us_citizen BOOLEAN;

BEGIN
DBMS_OUTPUT.PUT_LINE(v_name||'born on'||v_dob);

END;

a) If you ran the previous example in a SQL*Plus, what would be
the result?

b) Run the example and see what happens. Explain what is hap-
pening as the focus moves from one line to the next.

3.1.3 HANDLE PL/SQL RESERVED WORDS

Reserved words are ones that PL/SQL saves for its own use (e.g., BEGIN, END,
and SELECT).You cannot use reserved words for names of variables, literals, or
user-defined exceptions.

� FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE

exception VARCHAR2(15);
BEGIN

exception := 'This is a test';
DBMS_OUTPUT.PUT_LINE(exception);

END;

a) What would happen if you ran the preceding PL/SQL block?
Would you receive an error message? If so, explain.

LAB
3.1

50 Lab 3.1: PL/SQL Programming Fundamentals

3.1.4 MAKE USE OF IDENTIFIERS IN PL/SQL

Take a look at the use of identifiers in the following example:

� FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE

v_var1 VARCHAR2(20);
v_var2 VARCHAR2(6);
v_var3 NUMBER(5,3);

BEGIN
v_var1 := 'string literal';
v_var2 := '12.345';
v_var3 := 12.345;
DBMS_OUTPUT.PUT_LINE('v_var1: '||v_var1);
DBMS_OUTPUT.PUT_LINE('v_var2: '||v_var2);
DBMS_OUTPUT.PUT_LINE('v_var3: '||v_var3);

END;

In this example, you declare and initialize three variables. The values that you
assign to them are literals. The first two values, ‘string literal’ and ‘12.345’ are
string literals because they are enclosed by single quotes. The third value,
12.345, is a numeric literal. When run, the example produces the following
output:

v_var1: string literal
v_var2: 12.345
v_var3: 12.345
PL/SQL procedure successfully completed.

Consider another example that uses numeric literals:

� FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE

v_var1 NUMBER(2) := 123;
v_var2 NUMBER(3) := 123;
v_var3 NUMBER(5,3) := 123456.123;

BEGIN
DBMS_OUTPUT.PUT_LINE('v_var1: '||v_var1);
DBMS_OUTPUT.PUT_LINE('v_var2: '||v_var2);
DBMS_OUTPUT.PUT_LINE('v_var3: '||v_var3);

END;

LAB
3.1

Lab 3.1: PL/SQL Programming Fundamentals 51

a) What would happen if you ran the preceding PL/SQL block?

3.1.5 MAKE USE OF ANCHORED DATA TYPES

The data type that you assign to a variable can be based on a database object.
This is called an anchored declaration since the variable’s data type is dependent
on that of the underlying object. It is wise to make use of anchored data types
when possible so that you do not have to update your PL/SQL when the data
types of base objects change.

Syntax: <variable_name> <type attribute>%TYPE

The type is a direct reference to a database column.

� FOR EXAMPLE

-- ch03_2a.pls
SET SERVEROUTPUT ON
DECLARE

v_name student.first_name%TYPE;
v_grade grade.numeric_grade%TYPE;

BEGIN
DBMS_OUTPUT.PUT_LINE(NVL(v_name, 'No Name ')||

' has grade of '||NVL(v_grade, 0));
END;

a) In the previous example, what has been declared? State the
data type and value.

3.1.6 DECLARE AND INITIALIZE VARIABLES

In PL/SQL, variables must be declared in order to be referenced.This is done in
the initial declarative section of a PL/SQL block. Remember that each declara-
tion must be terminated with a semicolon.Variables can be assigned using the
assignment operator “:=”. If you declare a variable to be a constant, it will retain
the same value throughout the block; in order to do this, you must give it a
value at declaration.

Type the following into a text file and run the script from a SQL*Plus session.

LAB
3.1

52 Lab 3.1: PL/SQL Programming Fundamentals

-- ch03_3a.pls
SET SERVEROUTPUT ON
DECLARE

v_cookies_amt NUMBER := 2;
v_calories_per_cookie CONSTANT NUMBER := 300;

BEGIN
DBMS_OUTPUT.PUT_LINE('I ate ' || v_cookies_amt ||

' cookies with ' || v_cookies_amt *
v_calories_per_cookie || ' calories.');

v_cookies_amt := 3;
DBMS_OUTPUT.PUT_LINE('I really ate ' ||

v_cookies_amt
|| ' cookies with ' || v_cookies_amt *
v_calories_per_cookie || ' calories.');

v_cookies_amt := v_cookies_amt + 5;
DBMS_OUTPUT.PUT_LINE('The truth is, I actually ate '

|| v_cookies_amt || ' cookies with ' ||
v_cookies_amt * v_calories_per_cookie

|| ' calories.');
END;

a) What will the output be for the preceding script? Explain what
is being declared and what the value of the variable is through-
out the scope of the block.

� FOR EXAMPLE

-- ch03_3a.pls
SET SERVEROUTPUT ON
DECLARE

v_lname VARCHAR2(30);
v_regdate DATE;
v_pctincr CONSTANT NUMBER(4,2) := 1.50;
v_counter NUMBER := 0;
v_new_cost course.cost%TYPE;
v_YorN BOOLEAN := TRUE;

BEGIN
DBMS_OUTPUT.PUT.PUT_LINE(V_COUNTER);
DBMS_OUTPUT.PUT_LINE(V_NEW_COST);

END;

b) In the previous example, add the following expressions to the
beginning of the procedure (immediately after the BEGIN in
the previous example), then explain the values of the variables
at the beginning and at the end of the script.

LAB
3.1

Lab 3.1: PL/SQL Programming Fundamentals 53

v_counter := NVL(v_counter, 0) + 1;
v_new_cost := 800 * v_pctincr;

PL/SQL variables are held together with expressions and operators.An expres-
sion is a sequence of variables and literals, separated by operators.These expres-
sions are then used to manipulate data, perform calculations, and compare data.

Expressions are composed of a combination of operands and operators. An
operand is an argument to the operator; it can be a variable, a constant, a func-
tion call.An operator is what specifies the action (+, **, /, OR, etc.).

You can use parentheses to control the order in which Oracle evaluates an ex-
pression. Continue to add the following to your SQL script the following:

v_counter := ((v_counter + 5)*2) / 2;
v_new_cost := (v_new_cost * v_counter)/4;

c) What will the values of the variables be at the end of the
script?

3.1.7 UNDERSTAND THE SCOPE OF A BLOCK, NESTED BLOCKS,AND LABELS

SCOPE OF A VARIABLE

The scope, or existence, of structures defined in the declaration section are local
to that block. The block also provides the scope for exceptions that are declared
and raised. Exceptions will be covered in more detail in Chapters 7, 10, and 11.

The scope of a variable is the portion of the program in which the variable can be
accessed, or where the variable is visible. It usually extends from the moment of
declaration until the end of the block in which the variable was declared. The vis-
ibility of a variable is the part of the program where the variable can be accessed.

BEGIN -- outer block
BEGIN -- inner block

…;
END; -- end of inner block

END; -- end of outer block

LABELS AND NESTED BLOCKS

Labels can be added to a block in order to improve readability and to qualify the
names of elements that exist under the same name in nested blocks. The name of

LAB
3.1

54 Lab 3.1: PL/SQL Programming Fundamentals

the block must precede the first line of executable code (either the BEGIN or DE-
CLARE) as follows:

� FOR EXAMPLE

-- ch03_4a.pls
set serveroutput on

<<find_stu_num>>
BEGIN

DBMS_OUTPUT.PUT_LINE('The procedure
find_stu_num has been executed.');

END find_stu_num;

The label optionally appears after END. In SQL*Plus, the first line of a PL/SQL
block cannot be a label. For commenting purposes, you may alternatively use
“- -” or /*, ending with */.

Blocks can be nested in the main section or in an exception handler. A nested
block is a block that is placed fully within another block. This has an impact on
the scope and visibility of variables. The scope of a variable in a nested block is
the period when memory is being allocated for the variable and extends from the
moment of declaration until the END of the nested block from which it was de-
clared. The visibility of a variable is the part of the program where the variable
can be accessed.

� FOR EXAMPLE

-- ch03_4b.pls
SET SERVEROUTPUT ON
<< outer_block >>
DECLARE

v_test NUMBER := 123;
BEGIN

DBMS_OUTPUT.PUT_LINE
('Outer Block, v_test: '||v_test);

<< inner_block >>
DECLARE

v_test NUMBER := 456;
BEGIN

DBMS_OUTPUT.PUT_LINE
('Inner Block, v_test: '||v_test);

DBMS_OUTPUT.PUT_LINE
('Inner Block, outer_block.v_test: '||
outer_block.v_test);

END inner_block;
END outer_block;

This example produces the following output:

LAB
3.1

Lab 3.1: PL/SQL Programming Fundamentals 55

Outer Block, v_test: 123
Inner Block, v_test: 456
Inner Block, outer_block.v_test: 123

a) If the following example were run in SQL*Plus, what do you
think would be displayed?

-- ch03_5a.pls
SET SERVEROUTPUT ON
DECLARE

e_show_exception_scope EXCEPTION;
v_student_id NUMBER := 123;

BEGIN
DBMS_OUTPUT.PUT_LINE('outer student id is '

||v_student_id);
DECLARE
v_student_id VARCHAR2(8) := 125;

BEGIN
DBMS_OUTPUT.PUT_LINE('inner student id is '

||v_student_id);
RAISE e_show_exception_scope;

END;
EXCEPTION

WHEN e_show_exception_scope
THEN

DBMS_OUTPUT.PUT_LINE('When am I displayed?');
DBMS_OUTPUT.PUT_LINE('outer student id is '

||v_student_id);
END;

b) Now run the example and see if it produces what you ex-
pected. Explain how the focus moves from one block to an-
other in this example.

LAB 3.1 EXERCISE ANSWERS

This section gives you some suggested answers to the questions in Lab 3.1, with
discussion related to how those answers resulted. The most important thing to
realize is whether your answer works. You should figure out the implications of
the answers here and what the effects are from any different answers you may
come up with.

LAB
3.1

56 Lab 3.1: PL/SQL Programming Fundamentals

3.1.1 ANSWERS

a) Why does PL/SQL have so many different types of characters? What are they
used for?

Answer:The PL/SQL engine recognizes different characters as having different meaning
and therefore processes them differently. PL/SQL is neither a pure mathematical lan-
guage nor a spoken language, yet it contains elements of both. Letters will form various
lexical units such as identifiers or key words,mathematic symbols will form lexical units
known as delimiters that will perform an operation, and other symbols, such as /*, indi-
cate comments that should not be processed.

b) What would be the equivalent of a verb and a noun in English in PL/SQL? Do
you speak PL/SQL?

Answer:A noun would be similar to the lexical unit known as an identifier.A verb would
be similar to the lexical unit known as a delimiter. Delimiters can simply be quotation
marks, but others perform a function such as to multiply “*”.

3.1.2 ANSWERS

a) If you ran the previous example in a SQL*Plus, what would be the result?

Answer:Assuming SET SERVEROUTPUT ON had been issued, you would get only
born on.The reason is that the variables v_name and v_dob have no values.

b) Run the example and see what happens. Explain what is happening as the focus
moves from one line to the next.

Answer:Three variables are declared.When each one is declared, its initial value is null.
v_name is set as a varchar2VARCHAR2 with a length of 30,v_dob is set as a char-
acter type date, and v_us_citizen is set to BOOLEAN. Once the executable sec-
tion begins, the variables have no value and, therefore, when the DBMS_OUTPUT is
told to print their values, it prints nothing.

This can be seen if the variables were replaced as follows: Instead of v_name, use
NVL(v_name, 'No Name') and instead of v_dob use NVL (v_dob, '01-Jan-
1999'). Then run the same block and you will get

No Name born on 01-Jan-1999

In order to make use of a variable, you must declare it in the declaration section of
the PL/SQL block. You will have to give it a name and state its data type. You also
have the option to give your variable an initial value. Note that if you do not assign
a variable an initial value, it will be null. It is also possible to constrain the declara-
tion to “not null,” in which case you must assign an initial value. Variables must
first be declared and then they can be referenced. PL/SQL does not allow forward
references. You can set the variable to be a constant, which means it cannot change.

LAB
3.1

Lab 3.1: PL/SQL Programming Fundamentals 57

3.1.3 ANSWERS

a) What would happen if you ran the above PL/SQL block? Would you receive an
error message? If so, explain.

Answer: In this example, you declare a variable called exception. Next, you initialize
this variable and display its value on the screen.

This example illustrates an invalid use of reserved words.To the PL/SQL compiler,“ex-
ception” is a reserved word and it denotes the beginning of the exception-handling sec-
tion.As a result, it cannot be used to name a variable. Consider the huge error message
produced by this tiny example.

exception VARCHAR2(15);
*

ERROR at line 2:
ORA-06550: line 2, column 4:
PLS-00103: Encountered the symbol "EXCEPTION" when
expecting one of the following:
begin function package pragma procedure subtype type use
<an identifier> <a double-quoted delimited-identifier>
cursor
form current
The symbol "begin was inserted before "EXCEPTION"
to continue.
ORA-06550: line 4, column 4:
PLS-00103: Encountered the symbol "EXCEPTION" when
expecting one of the following:
begin declare exit for goto if loop mod null pragma
raise
return select update while <an identifier>
<a double-quoted delimited-identifier> <a bin
ORA-06550: line 5, column 25:
PLS-00103: Encountered the symbol "EXCEPTION" when
expecting one of the following:
() - + mod not null others <an identifier>
<a double-quoted delimited-identifier> <a bind variable>
avg
count current exists max min prior sql s
ORA-06550: line 7, column 0:
PLS-00103: Encountered the symbol "end-of-file" when
expecting one of the following:
begin declare end exception exit for goto if loop

Here is a question you should ask yourself: If you did not know that the word
“exception” is a reserved word, do you think you would attempt to debug the
preceding script after looking at this error message? I know I would not.

LAB
3.1

58 Lab 3.1: PL/SQL Programming Fundamentals

3.1.4 ANSWERS

a) What would happen if you ran the preceding PL/SQL block?

Answer: In this example, you declare and initialize three numeric variables.The first dec-
laration and initialization (v_var1 NUMBER(2) := 123) causes an error be-
cause the value 123 exceeds the specified precision.The second variable declaration
and initialization (v_var2 NUMBER(3) := 123) does not cause any errors be-
cause the value 123 corresponds to the specified precision.The last declaration and ini-
tialization (v_var3 NUMBER(5,3) := 123456.123) causes an error
because the value 123456.123 exceeds the specified precision.As a result, this exam-
ple produces the following output:

DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error
ORA-06512: at line 2

3.1.5 ANSWERS

a) In the previous example, what has been declared? State the data type and value.

Answer:The variable v_name was declared with the identical data type as the column
first_name from the database table STUDENT - varchar2(25).Additionally, the variable
v_grade was declared the identical data type as the column grade_numeric on the
grade database table – number NUMBER(3). Each has a value of null.

LAB
3.1

Lab 3.1: PL/SQL Programming Fundamentals 59

Most Common Data Types

VARCHAR2(maximum_length)
• Stores variable-length character data.
• Takes a required parameter that specifies a maximum length up to

32,767 bytes.
• Does not use a constant or variable to specify the maximum length;

an integer literal must be used.
• The maximum width of a VARCHAR2 database column is 4000 bytes.

CHAR[(maximum_length)]
• Stores fixed-length (blank-padded if necessary) character data.
• Takes an optional parameter that specifies a maximum length up to

32,767 bytes.
• Does not use a constant or variable to specify the maximum length;

an integer literal must be used. If maximum length is not specified,
it defaults to 1.

(cont'd.)

LAB
3.1

60 Lab 3.1: PL/SQL Programming Fundamentals

• The maximum width of a CHAR database column is 2000 bytes; the
default is 1 byte.

NUMBER[(precision, scale)]
• Stores fixed or floating-point numbers of virtually any size.
• Precision is the total number of digits.
• Scale determines where rounding occurs.
• It is possible to specify precision and omit scale, in which case scale

is 0 and only integers are allowed.
• Constants or variables cannot be used to specify precision and scale;

integer literals must be used.
• Maximum precision of a NUMBER value is 38 decimal digits.
• Scale can range from −84 to 127.
• For instance, a scale of 2 rounds to the nearest hundredth (3.456 be-

comes 3.46).
• Scale can be negative, which causes rounding to the left of the deci-

mal point. For example, a scale of -3 rounds to the nearest thou-
sandth (3456 becomes 3000). A scale of zero rounds to the nearest
whole number. If you do not specify the scale, it defaults to zero.

BINARY_INTEGER
• Stores signed integer variables.
• Compares to the NUMBER data type. BINARY_INTEGER variables

are stored in the binary format, which takes less space.
• Calculations are faster.
• Can store any integer value in the range −2,147,483,747 through

2,147,483,747.
• This data type is primarily used for indexing a PL/SQL table. This will

be explained in more depth in Chapter 16, “PL/SQL Tables.” You can-
not create a column in a regular table of binary_integer type.

DATE
• Stores fixed-length date values.
• Valid dates for DATE variables include January 1, 4712 B.C. to De-

cember 31, A.D. 9999.
• When stored in a database column, date values include the time of

day in seconds since midnight. The date portion defaults to the first
day of the current month; the time portion defaults to midnight.

• Dates are actually stored in binary format and will be displayed ac-
cording to the default format.

TIMESTAMP
• This is a new data type introduced with Oracle 9i. It is an extension

of the DATE data type. It stores fixed-length date values with preci-

LAB
3.1

Lab 3.1: PL/SQL Programming Fundamentals 61

sion down to a fraction of a second with up to 9 places after the
decimal (the default is 6). Here is an example of the default this dis-
plays for this data type: ‘12-JAN-2002 09.51.44.000000 PM’

• The “with timezone” or “with local timezone” option allows the
TIMESTAMP to be related to a particular time zone. This will then
be adjusted to the time zone of the database. For example, this
would allow a global database to have an entry in London and New
York recorded as being the same time even though it will display as
noon in New York and 5 P.M. in London.

BOOLEAN
• Stores the values TRUE and FALSE and the nonvalue NULL. Recall

that NULL stands for a missing, unknown, or inapplicable value.
• Only the values TRUE and FALSE and the nonvalue NULL can be as-

signed to a BOOLEAN variable.
• The values TRUE and FALSE cannot be inserted into a database column.

LONG
• Stores variable-length character strings.
• The LONG data type is like the VARCHAR2 data type, except that

the maximum length of a LONG value is 2 gigabytes.
• You cannot select a value longer than 4000 bytes from a LONG col-

umn into a LONG variable.
• LONG columns can store text, arrays of characters, or even short

documents. You can reference LONG columns in UPDATE, INSERT,
and (most) SELECT statements, but not in expressions, SQL func-
tion calls, or certain SQL clauses, such as WHERE, GROUP BY, and
CONNECT BY.

LONG RAW
• Stores raw binary data of variable length up to 2 gigabytes.

LOB (Large Object)
• There are four types of LOBS: BLOB, CLOB, NCLOB, and BFILE.

These can store binary objects, such as image or video files, up to 4
gigabytes in length.

• A BFILE is a large binary file stored outside the database. The maxi-
mum size is 4 gigabytes.

ROWID
• Internally, every Oracle database table has a ROWID pseudocolumn,

which stores binary values called rowids.
• Rowids uniquely identify rows and provide the fastest way to access

particular rows.
(cont'd.)

3.1.6 ANSWERS

a) What will the output be for the preceding script? Explain what is being declared
and what the value of the variable is throughout the scope of the block.

Answer:The server output will be

I ate 2 cookies with 600 calories.
I really ate 3 cookies with 900 calories.
The truth is, I actually ate 8 cookies with
2400 calories.
PL/SQL procedure successfully completed.

Initially the variable v_cookies_amt is declared to be a NUMBER with the value
of 2, and the variable v_calories_per_cookie is declared to be a CON-
STANT NUMBER with a value of 300 (since it is declared to be a tCONSTANT, it will
not change its value). In the course of the procedure, the value of v_cookies_amt
is later set to be 3, and then finally it is set to be its current value, 3 plus 5, thus becom-
ing 8.

b) In the previous example, add the following expressions to the beginning of the
procedure, then explain the values of the variables at the beginning and at the
end of the script.

Answer: Initially the variable v_lname is declared as a data type VARCHAR2 with a
length of 30 and a value of null.The variable v_regdate is declared as data type
date with a value of null.The variable v_pctincr is declared as CONSTANT

LAB
3.1

62 Lab 3.1: PL/SQL Programming Fundamentals

• Use the ROWID data type to store rowids in a readable format.
• When you select or fetch a rowid into a ROWID variable, you can

use the function ROWIDTOCHAR, which converts the binary value
into an 18-byte character string and returns it in that format.

• Extended rowids use a base 64 encoding of the physical address for
each row. The encoding characters are A–Z, a–z, 0–9, +, and /. Row ID
in Oracle 9i is as follows: OOOOOOFFFBBBBBBRRR. Each compo-
nent has a meaning. The first section, OOOOOO, signifies the data-
base segment. The next section, FFF, indicates the tablespace-
relative datafile number of the datafile that contains the row. The
following section, BBBBBB, is the data block that contains the row.
The last section, RRR, is the row in the block (keep in mind that this
may change in future versions of Oracle).

NUMBER with a length of 4 and a precision of 2 and a value of 1.15.The variable
v_counter is declared as NUMBER with a value of 0.The variable v_YorN is de-
clared as a variable of BOOLEAN data type and a value of TRUE.

The output of the procedure will be as follows (make sure you have entered SET
SERVEROUTPUT ON earlier on in your SQL*Plus session):

1
1200
PL/SQL procedure successfully completed.

Once the executable section is complete, the variable v_counter will be changed
from null to 1.The value of v_new_cost will change from null to 1200 (800 times
1.50).

Note that a common way to find out the value of a variable at different points in a
block is to add a DBMS_OUTPUT.PUT_LINE(v_variable_name); throughout the block.

c) What will the values of the variables be at the end of the script?

Answer:The value of v_counter will then change from 1 to 6, which is
((1 + 5) *2))/2, and the value of new_cost will go from 1200 to 1800, which
is (800 * 6)/4.The output from running this procedure will be:

6
1800
PL/SQL procedure successfully completed.

LAB
3.1

Lab 3.1: PL/SQL Programming Fundamentals 63

Operators (Delimiters): the Separators in an Expression

Arithmetic (** , * , / , + , -)

Comparison(=, <> , != , < , > , <= , >= , LIKE , IN , BETWEEN ,
IS NULL)

Logical (AND, OR, NOT)

String (||, LIKE)

Expressions

Operator Precedence

** , NOT

+, - (arithmetic identity and negation) *, / + , - , || =, <>, != , <= ,

>= , < , > , LIKE, BETWEEN, IN, IS NULL

AND—logical conjunction

OR—logical inclusion

3.1.7 ANSWERS

a) If the following example were run in SQL*Plus, what do you think would be dis-
played?

Answer:The following would result:

outer student id is 123
inner student id is 125
When am I displayed?
outer student id is 123
PL/SQL procedure successfully completed.

b) Now run the example and see if it produces what you expected. Explain how the
focus moves from one block to another in this example.

Answer:The variable e_Show_Exception_Scope is declared as an exception
type in the declaration section of the block.There is also a declaration of the vari-
able called v_student_id of data type NUMBER that is initialized to the number
123.This variable has a scope of the entire block, but it is visible only outside of the
inner block. Once the inner block begins, another variable, named v_student_id,
is declared.This time it is of data type VARCHAR2(8) and is initialized to 125.This vari-
able will have a scope and visibility only within the inner block.The use of DBMS_
OUTPUT helps to show which variable is visible.The inner block raises the exception
e_Show_Exception_Scope; this means that the focus will move out of the exe-
cution section and into the exception section.The focus will look for an exception
named e_Show_Exception_Scope. Since the inner block has no exception with
this name, the focus will move to the outer block’s exception section and it will find the
exception.The inner variable v_student_id is now out of scope and visibility.The
outer variable v_student_id (which has always been in scope) now regains visibil-
ity. Because the exception has an IF/THEN construct, it will execute the DBMS_
OUTPUT call.This is a simple use of nested blocks. Later in the book you will see more
complex examples. Once you have covered exception handling in depth in Chapters 7,
10, and 11, you will see that there is greater opportunity to make use of nested blocks.

LAB 3.1 SELF-REVIEW QUESTIONS

In order to test your progress, you should be able to answer the following questions.

1) If a variable is declared as follows, what are the results?

v_fixed_amount CONSTANT NUMBER;

a) _____ A NUMBER variable called v_fixed_amount has been declared (it
will remain as a constant once initialized).

b) _____ A NUMBER variable called v_fixed_amount has been declared (it
will remain as null).

LAB
3.1

64 Lab 3.1: PL/SQL Programming Fundamentals

c) _____ An error message will result because constant initialization must be
done in the executable section of the block.

d) _____ An error message will result because the declaration for the CON-
STANT is missing an assignment to a NUMBER.

2) Which of the following are valid character types for PL/SQL?

a) _____ Numbers
b) _____ English letters
c) _____ Paragraph returns
d) _____ Arithmetic symbols
e) _____ Japanese Kanji

3) A variable may be used for which of the following?

a) _____ To hold a constant, such as the value of π
b) _____ To hold the value of a counter that keeps changing
c) _____ To place a value that will be inserted into the database
d) _____ To hold onto the function of an operand
e) _____ To hold any value as long as you declare it

4) Which of the following will declare a variable that is of the identical data type as
the student_id in the database table STUDENT in the CTA database?

a) _____ v_id student_id := 123;
b) _____ v_id binary integer;
c) _____ v_id numberNUMBER := 24;
d) _____ v_id student_id%type;

5) The value of a variable is set to null after the ‘end;’ of the block is issued.

a) _____ True
b) _____ False

Answers appear in Appendix A, Section 3.1.

LAB
3.1

Lab 3.1: PL/SQL Programming Fundamentals 65

C H A P T E R 3

TEST YOUR THINKING

66 Chapter 3: Test Your Thinking

Before starting these projects, take a look at the formatting guidelines in Appendix B.
Make your variable names conform to the standard.At the top of the declaration sec-
tion, put a comment stating which naming standard you are using.

1) Write a PL/SQL block
a) That includes declarations for the following variables:

A VARCHAR2 data type that can contain the string ‘Introduction
to Oracle PL/SQL’
A NUMBER that can be assigned 987654.55, but not 987654.567
or 9876543.55
A CONSTANT (you choose the correct data type) that is auto-
initialized to the value ‘603D’
A BOOLEAN
A DATE data type autoinitialized to one week from today

b) In the body of the PL/SQL block, put a DBMS_OUTPUT.PUT_LINE
message for each of the variables that received an autoinitialization
value.

c) In a comment at the bottom of the PL/SQL block, state the value
of your NUMBER data type.

2) Alter the PL/SQL block you created in Project 1 to conform to the fol-
lowing specs:
a) Remove the DBMS_OUTPUT.PUT_LINE messages.
b) In the body of the PL/SQL block, write a selection test (IF) that

does the following (use a nested IF statement where appropriate):
i) Check whether the VARCHAR2 you created contains the

course named ‘Introduction to Underwater Basketweaving’.
ii) If it does, then put a DBMS_OUTPUT.PUT_LINE message on

the screen that says so.
iii) If it does not, then test to see if the CONSTANT you created

contains the room number 603D.
iv) If it does, then put a DBMS_OUTPUT.PUT_LINE message on

the screen that states the course name and the room number
that you’ve reached in this logic.

Chapter 3: Test Your Thinking 67

v) If it does not, then put a DBMS_OUTPUT.PUT_LINE Message
on the screen that states that the course and location could
not be determined.

c) Add a WHEN OTHERS EXCEPTION that puts a DBMS_
OUTPUT.PUT_LINE message on the screen that says that an error
occurred.

The projects in this section are meant to have you utilize all of the skills that you have
acquired throughout this chapter.The answers to these projects can be found in
Appendix D and at the companion Web site to this book, located at http://authors.
phptr.com/rosenzweig3e.Visit the Web site periodically to share and discuss your
answers.

