
“tdd” — 2003/6/10 — 21:42 — page 5 — #25
�

�

�

�

�

�

�

�

Chapter 1

TEST-DRIVEN
DEVELOPMENT

To vouch this, is no proof,
Without more wider and more overt test

- Othello, Act 1 Scene 3
William Shakespeare

From programmers to users, everyone involved in software development agrees:
testing is good. So why are so many systems so badly tested? There are several
problems with the traditional approach to testing:

• If testing is not comprehensive enough, errors can make it into production
and cause potentially devastating problems.

• Testing is often done after all the code is written, or at least after the
programmer who wrote the code has moved on to other things. When you
are no longer living and breathing a particular program, it takes some time
and effort to back into the code enough to deal with the problems.

• Often tests are written by programmers other than those who wrote the
code. Since they may not understand all of the details of the code, it is
possible that they may miss important tests.

• If the test writers base their tests on documentation or other artifacts other
than the code, any extent to which those artifacts are out of date will cause
problems.

• If tests are not automated, they most likely will not be performed frequently,
regularly, or in exactly the same way each time.

• Finally, it is quite possible with traditional approaches to fix a problem in a
way that creates problems elsewhere. The existing test infrastructure may
or may not find these new problems.

Test-Driven Development solves all of these problems, and others.
5



“tdd” — 2003/6/10 — 21:42 — page 6 — #26
�

�

�

�

�

�

�

�

6 Test-Driven Development Chapter 1

• The programmer does the testing, working with tests while the code is
freshly in mind. In fact, the code is based on the tests, which guarantees
testability, helps ensure exhaustive test coverage, and keeps the code and
tests in sync. All tests are automated. They are run quite frequently and
identically each time.

• Exhaustive test coverage means that if a bug is introduced during debug-
ging, the test scaffolding finds it immediately and pinpoints its location.
And the test-debug cycle is kept quite short: there are no lengthy delays
between the discovery of a bug and its repair.

• Finally, when the system is delivered, the exhaustive test scaffolding is
delivered with it, making future changes and extensions to it easier.

So from a pure testing standpoint, before we begin to discuss non-testing ben-
efits, TDD is superior to traditional testing approaches. You get more thoroughly
tested code, period.

But you do indeed get much more than that. You get simpler designs. You
get systems that reveal intent (describe themselves) clearly. The tests themselves
help describe the system. You get extremely low-defect systems that start out
robust, are robust at the end, and stay robust all the time. At the end of every
day, the latest build is robust.

These are benefits for all project stakeholders. But perhaps the most imme-
diate and most tangible benefit is exclusively the programmer’s: more fun. TDD
gives you, the programmer, small, regular, frequent doses of positive feedback
while you work. You have tangible evidence that you are making progress, and
that your code works.

There is a potential problem with all this, of course. It is more addictive than
caffeine. Once you’re hooked, you’ll want to program this way, and only this way,
from then on. And I for one certainly hope you do.

This chapter will give you an overview of Test-Driven Development, including
a short example of a programming session.

WHAT IS TEST-DRIVEN DEVELOPMENT?

Test-Driven Development (TDD) is a style of development where:

• you maintain an exhaustive suite of Programmer Tests,

• no code goes into production unless it has associated tests,

• you write the tests first,

• the tests determine what code you need to write.

Let’s look at each of these in turn.



“tdd” — 2003/6/10 — 21:42 — page 7 — #27
�

�

�

�

�

�

�

�

What Is Test-Driven Development? 7

Maintain an exhaustive suite of Programmer Tests

You have Programmer Tests to test that your classes exhibit the proper behavior.
Programmer Tests are written by the developer who writes the code being tested.
They’re called Programmer Tests because although they are similar to unit tests,
they are written for a different reason. Unit tests are written to test that the
code you’ve written works. Programmer Tests are written to define what it means
for the code to work. Finally, they’re called Programmer Tests to differentiate
them from the tests that the Customer writes (called, logically enough, Customer
Tests) to test that the system behaves as required form the point of view of a
user.

Using Test-Driven Development implies, in theory, that you have an exhaus-
tive test suite. This is because there is no code unless there is a test that requires
it in order to pass. You write the test, then (and not until then) write the code
that is tested by the test. There should be no code in the system which was not
written in response to a test. Hence, the test suite is, by definition, exhaustive.

No code goes into production unless it has associated tests

One of eXtreme Programming’s tenets is that a feature does not exist until there
is a suite of tests to go with it. The reason for this is that everything in the
system has to be testable as part of the safety net that gives you confidence
and courage. Confidence that all the code tests clean gives you the courage (not
to mention the simple ability) to refactor and integrate. How can you possibly
make changes to the code without some way to confidently tell whether you have
broken the previous behavior? How can you integrate if you don’t have a suite
of tests that will immediately (or at least in a short time) tell you if you have
inadvertently broken some other part of the code?

Write the tests first

Now we’re getting eXtreme. What do I mean by write the tests first? I mean
that when you have a task to do (i.e., some bit of functionality to implement)
you write code that will test that the functionality works as required before you
implement the functionality itself.

Furthermore, you write a little bit of test, followed by just enough code to
make that test pass, then a bit more test, and a bit more code, test, code, test,
code, etc.

Tests determine what code you need to write

By writing only the code required to pass the latest test, you are putting a limit
on the code you will write. You write only enough to pass the test, no more.
That means that you do the simplest thing that could possibly work. I think an
example is in order. Let’s say you are working on a list class. The logical place
to start is with the behavior of an empty list (it makes sense to start with the
basis, or simplest, case). So you write the test:



“tdd” — 2003/6/10 — 21:42 — page 8 — #28
�

�

�

�

�

�

�

�

8 Test-Driven Development Chapter 1

public void testEmptyList() {
MovieList emptyList = new MovieList();
assertEquals("Empty list should have size of 0", 0, emptyList.size());

}

To pass this test we need a MovieList class that has a size() method.
When you are working this way, you want to work in small increments. . . some-

times increments that seem ridiculously small. When you grasp the significance of
this, you will be on your way to mastering TDD. Later we’ll explore the important
and sometimes unexpected benefits and side effects of testing and coding in tiny
increments.

LET THE COMPUTER TELL YOU

Write your tests (and your code for that matter) without worrying about what
classes or methods you will need to add. Don’t even bother keeping a To Do list.
Well, at least in terms of what classes, methods, etc., you need to create. You
will likely want a To Do list to keep track of tests you want to write and other
higher level items. Just write your test and compile.

If you need to add a class or method the compiler will tell you. It provides
a better To Do list than you could, and faster. In the previous example when I
compile1 after writing the test (with nothing else written) I get the error:

MovieList cannot be resolved or is not a type.

This immediately tells me that I need to create a new MovieList class, so I do:

public class MovieList {
}

I compile again and get another error:

The method size() is undefined for the type MovieList

In response to this I add a stub size() method:

public int size() {
return 0;

}

Now it will compile. Run the test, and it works. Due to Java requiring a
return statement when a return type is defined, we need to combine the steps of
creating the method and adding the simplest return statement. I have made a

1Modern Java programming environments will alert me to these missing items even before
I compile. Furthermore, they will offer solutions and do the work of creating the stubs for me.



“tdd” — 2003/6/10 — 21:42 — page 9 — #29
�

�

�

�

�

�

�

�

A Quick Example 9

habit of always stubbing methods to return the simplest value possible (i.e., 0,
false, or null).

What!?! Just return 0? That can’t be right. Ah. . . but it is right. It is the
simplest thing that could possibly work to pass the test we just wrote. As we
write more tests we will likely need to revisit the size() method, generalizing and
refactoring, but for now return 0 is all that is required.

A QUICK EXAMPLE

Let’s take a peek into the development of the project from later in the book. We
have a Movie class which now needs to accept multiple ratings (e.g., 3 as in “3
stars out of 5”) and give access to the average.

As we go through the example, we will be alluding to a metaphor for the
TDD flow originated by William Wake: The TDD Traffic Light[URL 9][URL 61].

We start by writing a test, and we start the test by making an assertion that
we want to be true:

public void testRating() {
assertEquals("Bad average rating.", 4, starWars.getAverageRating());

}

Now we need to set the stage for that assertion to be true. To do that we’ll
add some rating to the Movie:

public void testRating() {
starWars.addRating(3);
starWars.addRating(5);
assertEquals("Bad average rating.", 4, starWars.getAverageRating());

}

Finally, we need to create the Movie instance we are working with:

public void testRating() {
Movie starWars = new Movie("Star Wars");
starWars.addRating(3);
starWars.addRating(5);
assertEquals("Bad average rating.", 4, starWars.getAverageRating());

}

When we compile this, the compiler complains that addRating(int) and getAver-
ageRating() are undefined. This is our yellow light. Now we make it compile by
adding the following code to Movie:

public void addRating(int newRating) {
}



“tdd” — 2003/6/10 — 21:42 — page 10 — #30
�

�

�

�

�

�

�

�

10 Test-Driven Development Chapter 1

public int getAverageRating() {
return 0;

}

Note that since we are using Java, we must provide a return value for getAver-
ageRating() since we’ve said it returns an int.

Now it compiles, but the test fails. This is the red light (aka red bar). This
term is derived by the JUnit interfaces that present a progress bar that advances
as tests are run. As long as all tests pass, the bar is green. As soon as a test
fails, the bar turns red and remains red. The message we get is:

Bad average rating. expected:<4> but was:<0>

Now we have to make the test pass. We add code to getAverageRating() to
make the test pass:

public int getAverageRating() {
return 4;

}

Recompile and rerun the test. Green light! Now we refactor to remove the
duplication and other smells that we introduced when we made the test pass.

You’re probably thinking “Duplication. . . what duplication?” It’s not always
obvious at first. We’ll start by looking for constants that we used in making
the test work. Sure enough, look at getAverageRating(). It returns a constant.
Remember that we set the test up to get the desired result. How did we do that?
In this case we gave the movie two ratings: 3 and 5. The average result is the
4 that we are returning. So, that 4 is duplicated. We provide the information
required to compute it, as well as returning it as a constant. Returning a constant
when we can compute its value is a form of duplication. Let’s get rid of it.

Our first step is to rewrite that constant into something related to the provided
information:

public int getAverageRating() {
return (3 + 5) / 2;

}

Compile and run the tests. We’re OK. We have the courage to continue. The
3 and 5 are duplicate with the arguments to addRating() so let’s capture them.
Since we add the constants we can simply accumulate the arguments. First we
add a variable to accumulate them:

private int totalRating = 0;



“tdd” — 2003/6/10 — 21:42 — page 11 — #31
�

�

�

�

�

�

�

�

A Quick Example 11

Then we add some code to addRating():

public void addRating(int newRating) {
totalRating += newRating;

}

Now we use it in getAverageRating():

public int getAverageRating() {
return totalRating / 2;

}

Compile, test, it works! We’re not finished yet, though. While we were
refactoring we introduced another constant: the 2 in getAverageRating(). The
duplication here is a little subtler. The 2 is the number ratings we added, i.e.,
the number of times addRating() was called. We need to keep track of that in
order to get rid of the 2.

Like before, start by defining a place for it:

private int numberOfRatings = 0;

Compile, run the tests, green. Now, increment it every time addRating() is
called:

public void addRating(int newRating) {
totalRating += newRating;
numberOfRatings++;

}

Compile, run the tests, green. OK, finally we replace the constant 2 with
numberOfRatings:

public int getAverageRating() {
return totalRating / numberOfRatings;

}

Compile, run the tests, green. OK, we’re done. If we want to reinforce our
confidence in what we did, we can add more calls to addRating() and check against
the appropriate expected average. For example:

public void testLotsOfRatings() {
Movie godzilla = new Movie("Godzilla");
godzilla.addRating(1);
godzilla.addRating(5);
godzilla.addRating(1);
godzilla.addRating(2);
assertEquals("Bad average rating.", 2, godzilla.getAverageRating());

}



“tdd” — 2003/6/10 — 21:42 — page 12 — #32
�

�

�

�

�

�

�

�

12 Test-Driven Development Chapter 1

I need to underline the fact that I recompiled and ran the tests after each little
change above. This cannot be stressed enough. Running tests after each small
change gives us confidence and reassurance. The result is that we have courage
to continue, one little step at a time. If at any point a test failed we know exactly
what change caused the failure: the last one. We back it out and rerun the tests.
The tests should pass again. Now we can try again. . . with courage.

The above example shows one school of thought when it comes to cleaning
up code. In it we worked to get rid of the duplication that was embodied in
the constant. Another school of thought would leave the constant 4 in place and
write another test that added different ratings, and a different number of them.
This second test would be designed to require a different returned average. This
would force us to refactor and generalize in order to get the test to pass.

Which approach should you take? It really depends on how comfortable you
are with what you are attempting. Remember that you do have the test to
safeguard you. As long as the test runs, you know that you haven’t broken
anything. In either case you will want to write that second test: either to drive
the generalization, or to verify it.

SUMMARY

We’ve explored what Test-Driven Development is:

• an exhaustive suite of Programmer Tests,

• no code without tests,

• tests first,

• tests determine the code.

We’ve seen how to leverage feedback from the computer to keep track of what
we should do next: if we need to create a class, method, variable, etc., the system
will let us know.

We’ve even seen a quick example of TDD in action, step by step, building
some code to maintain the average rating of a movie.

However, before we can jump in and start practicing it in earnest, we need to
make sure we have a few basic techniques and skills that TDD builds on. The
next few chapters will explore these.



“tdd” — 2003/6/10 — 21:42 — page 13 — #33
�

�

�

�

�

�

�

�

Summary 13

Agile Modeling and TDD

A primary benefit of both modeling and TDD is that they promote a
think before you act approach to development. Just because they offer
the same type of benefit doesn’t mean that they are incompatible with
one another. Instead, experience shows that we can and should model
on a project taking a TDD approach.

Consider XP projects that clearly take a TDD approach. Modeling is
definitely an important part of XP. XP practitioners work with user
stories, and user stories are clearly agile models. XP practitioners also
create CRC cards whenever they need to, also agile models. In eXtreme
Programming Explained [8], Kent Beck even includes sketches of class
diagrams. Heresy? No. Just common sense. If creating a model can
help our software development efforts then that’s what we do. It’s as
simple as that.

Creating agile models can help our TDD efforts because they can reveal
the need for some tests. As an agile modeler sketches a diagram they
will always be thinking, “How can I test this?” in the back of their
minds because they will be following the practice consider testability.
This will lead to new test cases. Furthermore, we are likely to find
that some of our project stakeholders or even other developers simply
don’t think in terms of tests; instead, they are visual thinkers. There’s
nothing wrong with this as long as we recognize it as an issue and act
accordingly—use visual modeling techniques with visual thinkers and
test-driven techniques with people that have a testing mindset.

TDD can also improve our agile modeling efforts. Following a test-
first approach, agile developers quickly discover whether their ideas
actually work or not—the tests will either validate their models or
not—providing rapid feedback regarding the ideas captured within the
models. This fits in perfectly with AM’s practice of Prove it With Code.

Agile Modeling (AM) and Test-Driven Development (TDD) go hand in
hand. The most effective developers have a wide range of techniques in
their intellectual toolboxes, and AM and TDD should be among those
techniques.

See Appendix B for more information on Agile Modeling.




