CHAPTER 1

Architecture and
Implementation

omputer science often distinguishes between abstraction and implementation—i.e.,

between the general and the particular. We may examine any computer system at two
major levels: its architecture and its organization. Although numerous books convey both of
these levels in their titles and contents, we are going to concentrate on architecture in this book.
We first direct our readers toward an understanding of the distinction between these levels.

In the first decades of the history of computers, the sporadic emergence of new ideas and
new companies resulted in a jumbled succession of disparate approaches to computer design.
The design of the 1BM® System/360 " series by Amdahl and his team, however, marked not
only the trend-setting idea of a family line of computers but also a clear articulation of architec-
ture as distinct from implementation:

* The architecture of a computer system is the abstraction equivalent to the user-visible
interface: the structure and the operation of the system as viewed by the assembly
language programmer and the compiler-writer. If an architecture is well-designed,
well-engineered to adapt to future technologies, and well-liked by the market, it may
persist for a decade or longer.

* An implementation is the realization and construction of that interface and structure out
of specific hardware (and possibly software) components. Because of technological
advances, any particular implementation (i.e., one model) may only be actively
marketed for a relatively short period of time.

Several different implementations of an architecture may appear over a period of years. Each can
offer different trade-offs among cost, performance, and convenience, but all will present the
same interface to the assembly language programmer. Such consistency over time, despite tech-
nological change, has clearly helped computer system manufacturers to develop brand loyalty
and facilitate the development of software as an allied industry.

2 Chapter 1 ¢ Architecture and Implementation

0

a. Piano keyboard architecture

77

b. Piano implementations

Figure 1-1 Architecture and implementation of the piano

1.1 Analogy: Piano Architecture

Architecture applies to buildings, landscapes, computers, and even pianos. Let us briefly con-
sider the architecture of pianos. Piano architecture can be defined by the specification of the key-
board, as shown in Figure 1-1a. The keyboard is the player (user) interface to this musical
instrument. It consists of 88 keys: 36 black keys and 52 white keys. Striking a key causes a note
of specified frequency to sound. As the size and the arrangement of the keys are identical for all
modern piano keyboards, anyone who can play the piano can play any piano.

Many implementations of piano architecture are possible, as shown in Figure 1-1b. The
implementation is concerned with the details of a particular maker’s materials. The kinds of
wood and metal used, the selection of ivory or plastic keys, and the size and shape of the instru-
ment are all implementation decisions made by the piano builder. Regardless of the implementa-
tion decisions made, however, any piano player can play the final product.

Types of Computer Languages 3

Table 1-1 Generations of Computer Languages

Generation Description Attributes and Examples

1GL Machine language Each instruction speaks directly to the hardware level of a
particular architecture. Instructions are numeric (i.e., binary
patterns of Os and 1s), but those can be made partially com-
prehensible by clustering adjacent bits together using an
appropriate choice of base:

¢ decimal (base 10), as in the IBM 1620
¢ octal (base 8), as in the PDP®-11

* hexadecimal (base 16), as in the Alpha™, Itanium®, and
most other current architectures.
2GL Assembly language Each instruction is a mnemonic—e.g., ADD—but stands in

near one-to-one correspondence with machine instructions.
Additional directives to the assembler program help with
storage allocation and program segmentation.

3GL High-level languages A compiler program translates statements in an arbitrarily
defined artificial programming language into the appropriate
sequences of machine-level primitives. Examples include
COBOL, FORTRAN, PL/I, BASIC, C, Pascal, and Ada.

4GL Newer languages Newer types of computer languages include:

« artificial intelligence languages (e.g., LISP)
» data access languages (e.g., SQL)
* natural-language query tools

* object-oriented languages (e.g., C++, Smalltalk, or Java®).

In a computer system, the architecture consists of the programming interface: the instruc-
tion set, the structure and addressing of memory, the control of input and output (I/O), and so on.
Several implementations of an architecture can be possible using different electronic design
techniques that may have different size, cost, and performance characteristics. A program that
runs on one machine should run on all machines conforming to the same architecture. Indeed,
computer architects including Rau and Fisher of Hewlett-Packard have expressed that a contract
exists between programs written for the architecture and the processor implementations of that
architecture.

1.2 Types of Computer Languages

The earliest computers had to be programmed by people who knew the detailed capabilities and
limitations of the hardware. Memory was an especially precious resource, and great care and
ingenuity were required to squeeze algorithms into the extremely limited space available. Subse-
quently, as the overall capabilities of computers improved and use became widespread, succes-
sive generations of computer languages were devised in order to improve programmer
productivity and accuracy at the expense of performance and resources. Table 1-1 shows the
progression of programming languages, where n GL means nth generation language.

4 Chapter 1 ¢ Architecture and Implementation

Assembly language lies between machine language and higher-level languages, such as C
or Pascal. Assembly language more precisely expresses the constraints of an architecture than do
high-level programming languages, but the latter are more amenable to reuse of code segments
and global optimization. Accordingly, learning at least one assembly language can lead to an
appreciation of what high-level languages actually do behind the scenes.

1.3 Why Study Assembly Language?

The convenience and greater portability of high-level languages raise the very real question of
why anyone should study assembly language. Is it some arcane rite of initiation for the truly
computer-savvy? Or is the primary motivation to see how a computer really works?

In a purely intellectual sense, an in-depth appreciation of at least one computer architec-
ture is incredibly helpful in trying to comprehend its most basic strengths and weaknesses.
Moreover, in a pragmatic sense, assembly language may make it possible to accomplish the
following:

* the fastest attainable execution speed;

* the least memory usage;

e very specialized data manipulation, thereby compensating for features lacking in a
particular high-level programming language; and

* specialized device control, such as a device driver not regularly furnished with the
operating system.

Hardware improvements over time certainly bring ever-faster program execution speeds. While
the ever-greater densities of memory technology would seem to reduce most concerns about pro-
gram size, occasions do still arise where the tightest, fastest code has significant value. Good
software engineering teams know when to utilize assembly language, even when they primarily
use 3GL and 4GL tools. Many compilers for the C programming language explicitly provide a
means to embed brief sequences of assembly language into a program using the asm keyword or
_ Asm intrinsic functions.

To be sure, assembly language is relatively difficult to code, debug, and maintain. Most
severely, assembly language lacks portability from one architecture to another and thus, in long-
term value, suffers significantly in comparison to high-level languages. Hyde has discussed
these and other objections to assembly language, but has offered further reasons why learning
assembly language deserves the attention of aspiring and practicing computer scientists. In par-
ticular, good assembly language programmers make better high-level language programmers
“because they understand the limitations of the compiler and they know what it’s doing with
their code.” We will return to this concept in later chapters.

Prefixes for Binary Multiples 5

1.4 Prefixes for Binary Multiples

For certain topics, especially architecture, computer science is a quantitative science. We shall
introduce appropriate discussions of number systems and related matters as they are needed. The
first such discussion here treats the matter of scale factors and abbreviations for “big” numbers.

Treating 210 (1024) and 10° (1000) as synonymous introduced a sloppy situation for
nomenclature in the fields of computer science, data processing, and data transmission. People
were using the prefix kilo, from the International System of Units (SI), not only for its proper
meaning of precisely 1000, but also to denote the binary multiple 1024. Doing so introduces an
uncertainty of 2.4% in magnitude. The uncertainty compounds to more than 4.8% for the SI pre-
fix mega, and the discrepancy just gets worse and worse for larger quantities. Moreover, kilo is
typically abbreviated as a capital K in computer-related contexts, even though the proper SI
abbreviation is a small k for kilo (which is an exception to the capitalization of most other abbre-
viated SI prefixes that denote multiples).

In 1998, the International Electrotechnical Commission (IEC) approved a new standard of
names and symbols for the prefixes for binary multiples. The new names have mnemonic analo-
gies to corresponding decimal multiples, as shown in Table 1-2.

Table 1-2 Prefixes for Binary Multiples

Factor Name Symbol Origin Analogy
210 kibi Ki kilobinary: (210! kilo: (103)!
220 mebi Mi megabinary: (210)2 mega: (103)2
230 gibi Gi gigabinary: (210)3 giga: (103)3
240 tebi Ti terabinary: (21%4 tera: (103’)4
250 pebi Pi petabinary: (210)5 peta: (103)5
260 exbi Ei exabinary: (210)6 exa: (103)6

The IEC-approved prefixes are not part of the International System of Units (SI), but they
have been supported by the International Committee for Weights and Measures (CIPM) and the
Institute of Electrical and Electronics Engineers (IEEE®).

We use these new prefixes in this book. For instance, in the next three tables of this chap-
ter, you will see KiB and MiB denoting kibibytes and mebibytes, where you might have
expected KB and MB denoting kilobytes and megabytes, respectively.

1.5 Instruction Set Architectures

An instruction set architecture (ISA) abstracts the interface between a computer’s hardware and
the lowest-level software for the programmer or compiler-writer. Thorough knowledge of an
ISA involves not only the appropriate ways to operate the programmer-accessible registers used
for calculations and storage of intermediate results, but also how to move data between those

6 Chapter 1 ¢ Architecture and Implementation

registers and memory, storage, or other attached devices. With knowledge of a particular
ISA, one knows in principle what the computer can do and—as we shall sketch out in this
book—what simple studies to conduct when seeking improved performance with particular
implementations.

A well-conceived ISA leaves considerable latitude for implementations that realize the
architectural concept in numerous actual products that serve different purposes with different
cost implications. Ideally, the ISA will not be rendered prematurely obsolete by any unforeseen
technological developments, because the effort and cost to design a new ISA and gain its adop-
tion in the marketplace are very high.

Certain interrelated facets of the design of an ISA usually cannot be changed through new
implementations; instead, they require extension or replacement of the architecture. Those
intrinsic components of design include the following: the bit width(s) of data to be easily manip-
ulated; the types of data to be represented and manipulated; the number and nature of registers;
the amount of memory to be readily accessible, and in how many ways it can be accessed;
the way that external devices are to be accessed; and the numbers and classes of machine
instructions.

In the next section, we show some of the very different choices the computer industry has
made for those and other architectural facets. We give more details in Chapter 2 and throughout
the book.

1.6 The Life Cycle of Computer Architectures

Successive implementations of a computer architecture are routinely brought forth by a hard-
ware innovator at fairly frequent intervals. A completely new architecture, or a whole new class
of architectures, appears much less frequently.

Contemporary architectures fall into three classes. Complex Instruction Set Computers
(CISC) typically include large numbers of machine instructions of many different styles. That
complexity poses difficulties of implementation, because each style of instruction may require
substantial real estate on the computer chip. Reduced Instruction Set Computers (RISC) are
defined by smaller numbers of machine instructions of very few styles. The savings in space on
a computer chip can, in favorable situations, make possible intrinsically faster circuitry. RISC
programs can thus potentially execute faster than CISC programs, even though they usually con-
tain more machine instructions. The third and newest class of contemporary architecture, Explic-
itly Parallel Instruction Computers (EPIC), includes the Itanium architecture that this book uses
as its central example.

Computer architectures may also be classified according to the width of the datapath, the
internal components through which information flows—e.g., 64 bits for Itanium architecture.

When new architectures emerge, they may appear to be evolutionary because they evince
strong family resemblances to earlier architectures from the same vendor. On the other hand,
they may appear revolutionary because they offer a clean break with the past. We now illustrate
these concepts through the history of three families of computer architectures.

The Life Cycle of Computer Architectures 7

1.6.1 The 32-Bit Intel® Architecture and Its Predecessors

In 1971, Intel® Corporation integrated all of the traditional functionality of a central processing
unit (CPU) into a single microcomputer chip, given the marketing number 4004. This pioneering
chip could handle data 4 bits at a time and could access 640 bytes of memory. A year later, the
8008 microprocessor chip appeared with the ability to handle data 8 bits at a time and access
16,384 bytes of memory.

Table 1-3 looks at the characteristics of successive members of the family of processors
starting with the Intel 8080, which was the basis for some of the earliest inexpensive general-
purpose personal computers. As memory technologies improved, the push toward convenient
addressing of larger amounts of memory drove Intel and other manufacturers to redesign their
products with successively greater widths for the internal registers and pathways where
addresses (pointers) as well as data are manipulated. By 1990 this trend settled on 32 bits as the
prevailing standard register width for even the smallest computers, which had come to be called
microcomputers because of their physical size, and not as a measure of their computing power.

An important feature of these Intel processors is that each generation can execute most
programs prepared for the previous generation because of similarities of integer registers. The
right half of a 16-bit register can be used to manipulate 8-bit integers, the right half of a 32-bit
register can be used to manipulate 16-bit integers, and the right quarter of a 32-bit register can be
used to manipulate 8-bit integers. Assembly language programs written for the 8080 could auto-
matically be translated into a format suitable for the 8086 processor, and programs written for
the 16-bit processors can run directly on the 32-bit processors. We shall discuss some of the
other information in Table 1-3 in later sections of this book.

1.6.2 The Alpha™ Architecture and Its Predecessors

The design of the IBM System/360 strongly influenced many subsequent computer architec-
tures, including 16-bit minicomputers brought forth by numerous manufacturers during the
1970s. Quite possibly the most successful among those designs, the PDP®-11 by Digital®
Equipment Corporation, not only persisted through about a dozen implementations over more
than two decades, but also came to be seen as the progenitor of families of 32-bit VAX® and
64-bit Alpha™ computers.

Some of the attributes of the PDP-11, VAX, and Alpha product lines are summarized in
Table 1-4. The VAX (Virtual Addressing eXtension) is frequently cited as the exemplar of a
Complex Instruction Set Computer (CISC). The Alpha processor was the first 64-bit Reduced
Instruction Set Computer (RISC) to attain wide commercial deployment. Several other manufac-
turers had already marketed successful 32-bit RISC designs, but Digital Equipment Corporation
opted to make its move to 64 bits simultaneously with its move from CISC to RISC. We shall
discuss some of the other information in Table 14 later in this book.

Chapter 1 ¢ Architecture and Implementation

Table 1-3 Comparisons Among Computer Architectures by Intel Corporation

Datapath width

8 bits (1 byte)

16 bits (2 bytes)

32 bits (4 bytes)

Marketing names

Physical formats

Complexity classification
Number of integer registers
Interchangeability of registers
Instruction size

Number of instruction styles
Number of opcodes

Number of operands

Allowed memory access
Number of addressing modes
Number of integer data types
Number of floating data types
Byte ordering

Unidirectional branch range

Logical address space

Input/output strategy

Date of introduction

8080, 8085

single chip
classic micro
8
almost none
1, 2, 3 bytes
7
74
0,1,2
few instructions
6
2
0
little-endian

full-range 64 KiB
COND and JUMP

64 KiB

IN, OUT

1974

8086, 8088,
80286

single chip
CISC
14
some
1-4 bytes
byte stream
133
0,1,2,3
many instructions
8
3
3
little-endian

127 bytes

1 MiB¥

memory-mapped;
IN, OUT

1978

Intel386
Inteld86
Pentium®

single chip
CISC
16
moderate
1-17 bytes
byte stream
154
0,1,2,3
many instructions
8+
4
3
little-endian

32 KiB

4 GiBY

memory-mapped;
IN, OUT

1985

* Floating-point operations required a second chip for all 16-bit processors and some 32-bit processors.

+ Initially; subsequently extended.

The Life Cycle of Computer Architectures

Table 1-4 Comparisons Among Computer Architectures by Digital Equipment Corporation

Datapath width

16 bits (2 bytes)

32 bits (4 bytes)

64 bits (8 bytes)

Marketing names

Physical formats

Complexity classification
Number of integer registers
Interchangeability of registers
Instruction size

Number of instruction styles
Number of opcodes

Number of operands

Allowed memory access
Number of addressing modes
Number of integer data types
Number of floating data types
Byte ordering

Unidirectional branch range
Logical address space

Input/output strategy

Lifetime as a marketed product

PDP-11, LSI-11

circuit board(s),
single chip

classic mini
8
extensive
2,4, 6 bytes
6
> 100
0,1,2
many instructions
8
2
2
little-endian
255 bytes
64 KiB
memory-mapped

1971-1995

VAX, MicroVAX

circuit board(s),
single chip

CISC
16
extensive
1 - 37 bytes
byte stream
> 256
0-6
many instructions
12
5
4
little-endian
127 bytes
4 GiB
memory-mapped

1978-2000

Alpha

single chip

RISC
32
extensive
4 bytes
7
> 100
0-3
only load/store
2
2
5
little-endian*
4 MiB
16 EiB
memory-mapped

1992—

*Initially; subsequently extended.

1.6.3 The Itanium® Architecture and Its Predecessors

Both the VAX architecture and Intel’s 32-bit architecture are cited as exemplars of Complex
Instruction Set Computers (CISC). At the implementation level, the circuitry required on a chip
to recognize and carry out many different styles of instructions can be elaborate and difficult to
optimize for fast execution times. By the 1980s, research in computer science had led to serious
proposals for a different approach to high performance: Select fewer instructions and design
ways to execute them exceedingly quickly, rather than introduce more instructions of increasing

specialization.

10 Chapter 1 ¢ Architecture and Implementation

Although Intel engineers continually found ways to bring out further implementations of a
successful 32-bit architecture without compromising performance, several other computer mak-
ers redirected their attention to the design of Reduced Instruction Set Computers (RISC).
Hewlett-Packard® Company developed a 32-bit architecture that was at first called Precision
Architecture, and later PA-RISC®. The salient features of RISC processors include fixed-size
instructions, fewer instructions overall, larger numbers of integer registers to be used in similar
ways, and restrictions on the number of instruction types that can directly manipulate data in the
computer’s memory. The 64-bit Alpha architecture (Table 1-4) and the 32- and 64-bit PA-RISC
architectures (Table 1-5) follow these RISC principles.

Even as CISC and RISC designs coexisted amongst marketed computer systems in the
1990s, Intel collaborated with Hewlett-Packard in developing another fundamental class of com-
puter architecture, Explicitly Parallel Instruction Computers (EPIC). In essence, an EPIC com-
puter can simultaneously pursue more than one course of action, thus gaining a throughput
advantage. An EPIC design can avoid certain time penalties that plague other architectures when
the flow of instructions in a program has to change abruptly, as must occur for loop control. The
earliest commercial product using EPIC design principles is the 64-bit Itanium processor, whose
characteristics are compared with PA-RISC in Table 1-5.

1.6.4 The Naming of Architectures and Implementations

Sometimes the same or similar names have been given both to an architecture and to its imple-
mentations. In the case of VAX architecture, “VAX” was incorporated into the name of every
implementation; moreover, the ISA remained very stable during the long prevalence of
this architecture in the marketplace. There is no such continuing thread connecting the
names of implementations within the various generations of products from Intel or several other
corporations.

Intel Corporation has at various times designated its 16-, 32-, and 64-bit instruction sets as
IA-16, IA-32, and TA-64. Any popular ISA, such as IA-32, accrues additional instructions over
time. This leads to an ambiguity: whether the original designation defines the basic instruction
set or the currently augmented set. Neither “IA-16" nor “IA-32” has appeared prominently in
commercial product descriptions.

Intel used the phrase “IA-64 architecture” while the new 64-bit architecture was under
development, but changed to “Itanium architecture” when marketing the first implementation,
which was called “the Itanium processor.” As the Itanium 2 processor (code name McKinley)
reached production, Intel established the primacy of “Itanium Architecture” over “IA-64" or the
lesser-known “Itanium Processor Family” (IPF). Thus, just as with VAX architecture and VAX
processor implementations, we must accept some blurring of the distinction between the naming
of an architecture and any implementation.

The Life Cycle of Computer Architectures 11

Table 1-5 Comparisons Among Computer Architectures by Hewlett-Packard and Intel

Datapath width 32 bits (4 bytes) 64 bits (8 bytes) 64 bits (8 bytes)
Marketing names PA-RISC® 7xxx PA-RISC® 8xxx Itanium®
Physical formats circuit board(s), single chip single chip
single chip
Complexity classification RISC RISC EPIC
Number of integer registers 32 32 128
Instruction size 4 bytes 4 bytes (3x41) + 5 bits
Number of instruction styles ~13 >20 6
Number of principal opcodes 45 59 41
Number of operands 0-3 0-3 0-5

Allowed memory access

only load/store

only load/store

only load/store

Number of addressing modes 4 4 5

Number of integer data types 5 5 4

Number of floating data types 3 3 3

Byte ordering big-endian* big-endian, little-endian,
little-endian big-endian

Unidirectional branch range 256 KiB 256 KiB 16 MiB

Logical address space 4 GiB* 15 EiB 16 EiB

Input/output strategy

Date of introduction

memory-mapped

1986

memory-mapped

1996

memory-mapped

2001

* Initially; subsequently extended.

The code-name issue deserves further discussion: When a company has something new
under development, the company (or the trade press) may use a code name for it. The trade press
wrote for several years about “Merced” as something forthcoming from Intel Corporation. It was
not always clear whether Merced meant an implementation or an architecture. Furthermore,
some future author writing retrospectively about Itanium architecture and/or the original Itanium
processor might miss a lot of historical source material without using the Merced, IA-64, IA64,
and IPF as additional search keywords.

12 Chapter 1 ¢ Architecture and Implementation

1.7 SQUARES: A First Programming Example

Beginnings are hard. Just think back to the very first program that you wrote in any computer
language. It was probably oversimplified, and the hardest task may have been getting data in or
out. In this book, each illustrative example in assembly language is kept as simple as possible in
order to help you focus your reading and study on the matter at hand, though you must also
attend to the details.

In this section, we present a simple but complete program that has served well as a teach-
ing example. We are going to express the algorithm in three high-level languages and in assem-
bly language for the Itanium architecture

Statement of the problem: Write a program that will produce in memory a table of the
squares of the first three integers without using multiplication instructions.

Presentation of the algorithm: We begin by writing down the first several integers, N,
their squares, NZ, and finally the first and second tabular differences in Figure 1-2.

N N2 1st tabular difference 2nd tabular difference
1 1
3
2 4 2
5
3 9 2
7
4 16 2
9
5 25

Figure 1-2 Computation of squares by tabular differences

Successive values of the first tabular difference are computed by adding the constant second tab-
ular difference each time. Then successive values of the squares can be computed by adding the
appropriate value of the first difference to the already known previous square.

1.7.1 C, FORTRAN, and COBOL

The enumeration for computing successive squares is readily expressed in a standard 3GL pro-
gramming language such as C:

#include <stdio.h>

main ()

{
long long sqgl, sg2, sd3;
long long temp, diffl, diff2;

diffl = 1;
diff2 = 2;
temp = 1;

sgql = temp;

SQUARES: A First Programming Example

diffl = diff2 + diffl;

temp = diffl + temp;

sg2 = temp;

diffl = diff2 + diffl;

temp = diffl + temp;

sg3 = temp;

printf ("%$11d\t%11d\t%11d\n", sqgl, sg2, sq3);
return O;

}

or FORTRAN:
PROGRAM SQUARES
INTEGER*8 SQ1, SQ2, S0Q3
INTEGER*8 TEMP, DIFF1l, DIFF2
DIFFl = 1
DIFF2 = 2
TEMP = 1
SQ1 = TEMP
DIFF1 = DIFF2 + DIFF1l
TEMP = DIFF1l + TEMP
SQ2 = TEMP
DIFF1 = DIFF2 + DIFF1l
TEMP = DIFFl + TEMP
S0Q3 = TEMP
PRINT *, SQ1, SQ2, SQ3
END

or COBOL.:

IDENTIFICATION DIVISION.
PROGRAM-ID. SQUARES.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 OUTPUT-FIELD.
* Note that COMP for 18 digits equates to a quad word.
* CR1,2,3 are 0x0d = 13 = CR, for on-screen display

05 S0l PIC 9(18) VALUE O.
05 CR1 PIC X(1) VALUE X"0OD".
05 SsQ2 PIC 9(18) VALUE 0.
05 CR2 PIC X(1) VALUE X"0OD".
05 S03 PIC 9(18) VALUE 0.
05 CR3 PIC X(1) VALUE X"0D".
01 CALCULATION-FIELD.
05 DIFF1 PIC 9(18) VALUE 1.
05 DIFF2 PIC 9(18) VALUE 2.

05 TEMP PIC 9(18) VALUE 1.

14 Chapter 1 ¢ Architecture and Implementation

*

PROCEDURE DIVISION.
CALCULATE-SQUARES SECTION.
MOVE TEMP TO SQ1.
ADD DIFF2 TO DIFF1l GIVING DIFF1.
ADD DIFF1 TO TEMP GIVING TEMP.
MOVE TEMP TO SQ2.
ADD DIFF2 TO DIFF1l GIVING DIFF1.
ADD DIFF1 TO TEMP GIVING TEMP.
MOVE TEMP TO SQ3.
DISPLAY-RESULTS SECTION.
DISPLAY OUTPUT-FIELD.

EXIT PROGRAM.
END PROGRAM SQUARES.

It should be evident that the pattern of first adjusting di££1, then using di££1 to adjust temp,
and finally storing temp as the next square could be iterated any desired number of times to
compute sqg4, etc.

1.7.2 Assembly Language for Itanium Architecture

Now let us transform the expression of this algorithm from a 3GL implementation into a 2GL
equivalent in Itanium assembly language. This listing will appear quite new to you even if you
are familiar with the IA-32 or PA-RISC architectures. Stark differences are very common when
attempting to move from one assembly language to another.

The algorithm for the SQUARES program (Figure 1-2), as written in Itanium assembly
language, is shown in Figure 1-3. We will not fully explain the language elements used here. For
the present, it is enough to appreciate that the three columns at the left make up the actual pro-
gram instructions. The phrases in mixed case to the right of two slash characters (//) are
explanatory comments that annotate the programmer’s intended relationship between those
instructions and the algorithm.

We shall show how to run SQUARES in Chapter 3, after we have introduced the symbolic
debugger. For now, you may focus your attention on the substance of the algorithm from first
to done. In later chapters we shall also explain the purpose of the lines preceding ma in and fol-
lowing done.

The Itanium add instruction reads left to right like an algebraic expression in a high-level
language, but with a comma instead of a plus sign. An Itanium processor has 128 integer regis-
ters, Gry ... Grp7, that are addressed as r0 ... r127 in assembly language.

SQUARES: A First Programming Example 15

// SQUARES Table of Squares
.data // Declare storage
.align 8 // Desired alignment
sqgl: .skip 8 // To store 1 squared
sg2: .skip 8 // To store 2 squared
sg3: .skip 8 // To store 3 squared
// etc.
.text // Section for code
.align 32 // Desired alignment
.global main // These three lines
.proc main // mark the mandatory
main: // 'main' program entry
.body // Now we really begin...
first: mov r2l = 1;; // Gr2l1l = first difference
mov r22 = 2;; // Gr22 = 2nd difference
mov r20 = 1;; // Gr20 = first square
addl rld = @gprel(sql),gp;; // Point to storage
st8 [r1l4] = r20;; // for sql
add r21 = r22,r21;; // Adjust first difference
add r20 = r21,r20;; // Gr20 = second square
addl rl4 = @Qgprel(sg2),gp;; // Point to storage
st8 [r14] = r20;; // for sqg2
add r2l1l = r22,r21;; // Adjust first difference
add r20 = r21,r20;; // Gr20 = third square
addl rld = @gprel (sg3),gp;; // Point to storage
st8 [r14] = r20;; // for sa3
// etc.
done: mov r8 = 0;; // Signal all is normal
br.ret.sptk.many b0;; // Back to command line
.endp main // Mark end of procedure

Figure 1-3 SQUARES program for Itanium architecture

Unlike many older assembly languages, Itanium assembly language does not support
direct symbolic addressing of a data location, such as sgl where we want to store the first com-
puted square. It instead requires two steps. First, we calculate the address of sg1 in register r14
by adding an offset @gprel (sgl) computed by the assembler onto the address contained in
register gp, the global pointer. This pointer gets a value when the system loads the program.
We then store the computed 8-byte value in register r20 into memory at the address given by
register r14, using the assembler syntax [r14] with a store (st8) instruction. Similarly, we
copy the value of each successive square computed in register r2 0 into the appropriate memory
location.

The double semicolons shown in Figure 1-3 mark stops, which inform an Itanium assem-
bler that we have not analyzed potential timing interdependencies among the machine instruc-
tions. The assembler can produce from this format a valid program free from such
complications, as we shall show later in this book. This simple SQUARES program does not
illustrate the parallelism or predication features of the EPIC architecture.

16 Chapter 1 ¢ Architecture and Implementation

1.8 Review of Number Systems

Throughout this book we use the decimal (base 10), binary (base 2), octal (base 8), and hexadec-
imal (base 16) number systems. A concise review of number systems and representations for
integer data will conclude this introductory chapter. You should skip this material only if you are
already adept with conversions among these representations, including expressions of negative
integer values.

All data stored and manipulated in contemporary computers exist in binary form. Integers,
floating-point numbers, characters, and instructions exist as sequences of zeros and ones. This
binary representation is base 2.

When we display binary data, we usually use base 8 (octal), base 10 (decimal), or base 16
(hexadecimal), instead of base 2 (pure binary). These larger bases are easier for humans to com-
prehend than long strings of binary digits, but the value of a stored chunk of numeric informa-
tion is the same, regardless of the base used to represent it.

Different bases are suitable for different applications. Bases 8 and 16 are particularly use-
ful for emphasizing patterns of bits within a stored unit, while base 10 is useful for understand-
ing the everyday value of a stored number, since it is the base used for counting in natural human
languages.

1.8.1 Positional Coefficients and Weights

The most frequently encountered numbering system involves positional coefficients and
weights. The digit value at each position in a number is its positional coefficient. The weight of
each digit is a successively larger power of the base of the number system, from right to left. We
can express a value Q in the number system with base r (also called the radix), as follows, allow-
ing for a fractional portion {in braces}:

Q=x,W, + X, W1 + ... +x1w +xowo + {x_jw_1 + ... +x_,w_,}

where

that is, weight = r%and r = radix or base, and
0 < X; <r-— 1

that is, x; = positional coefficient.

This formalism ensures that the largest value of a positional coefficient is always one less
than the base value—i.e., 1 for base 2 (binary), 9 for base 10 (decimal), and so forth. When the
base is greater than 10, the letters A, B, ... can be used to convey the positional coefficients with
values of 10 and beyond. Base 16 (hexadecimal) uses the letters A through F to represent numer-
ical values 10 through 15, respectively.

Review of Number Systems 17

We will illustrate these concepts by expressing the value 154 in the bases 2, 8, 10, and 16,
as follows:

154 =1x10>+5%x10"+4x 10° (base 10)
=1x27+0x2040x20 +1x2%+1x22+0x22+1x2' +0x2° (base2)
=2x82+3x8 +2x80 (base 8)
=9x16' + Ax 16° (base 16)

That is, the value 154 results from summing the non-zero terms:

154 =100+50+4 (base 10)
=128+16+8+2 (base 2)
=128+24+2 (base 8)
=144 + 10 (base 16)

In summary: 15410 =1001 10102 = 2328 = 9A16'
Up to this point, we have used a subscript of 16 when denoting representations of base 16.
Notations commonly used in computer science are 0X or 0x (e.g., compilers for the C language)

or a suffix of H or h (e.g., some Intel documentation) when expressing a hexadecimal value:
15419 =9A4 = 0x9A = 9AH.

1.8.2 Binary and Hexadecimal Representations

Modern digital computers use the binary number system internally because the most practical
physical components are intrinsically binary in nature. Since long strings of Os and 1s are cum-
bersome for human beings, most computer professionals routinely use base 16, or occasionally
base 8. The various system software components—assemblers, compilers, linkers, and so
forth—readily convert such numbers to their binary equivalents. Table 1-6 shows the binary,
octal, and hexadecimal equivalents for the decimal values O through 16.

Base 8 and 16 representations are not only convenient but are easily derived from binary
representations. Converting from binary to base 8 or 16 simply requires separating the binary
number into 3-bit (for octal) or 4-bit (for hexadecimal) groups, from right to left, and then
replacing each binary group with the appropriate digit for the new base (from Table 1-6). Con-
sider the following illustration of decimal value 1249:

010011100001, (base 2)
010011 100 001, = 23414 (base 8)
0100 1110 0001, = 4E1 ¢ (base 16)

Although this process is relatively intuitive, you may already appreciate that some pocket calcu-
lators have the capability to convert numbers amongst these common bases.

18 Chapter 1 ¢ Architecture and Implementation

Table 1-6 Conversion Table for the First Few Integers

Decimal Binary Octal Hexadecimal
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 1 0000 20 10

The system software components for the assembly language programmer may express
their outputs—program listings, linker maps, debugging aids, and dumps of memory contents—
in octal or hexadecimal by default; decimal conversion may also be offered. Sometimes manual
interpretation is required, as when several data elements of different bit widths have been packed
for storage as one composite binary number.

1.8.3 Signed Integers

In the history of computer development, three methods have been considered for binary repre-
sentations of ranges that include negative as well as positive integers. These methods are: sign
and magnitude, one’s complement, and two’s complement. Sign and magnitude requires greater
complexity at the physical implementation level, while one’s complement introduces the com-
plication of having two bit patterns that both represent the number zero. Since testing for zero is

Review of Number Systems 19

a common operation, the need to consider two cases would require greater complexity at the
physical implementation level. Accordingly, contemporary computers use two’s complement
representation for signed integers.

All methods for representing signed integers within N bits have the net effect of allocating
one bit to represent positive/negative and the remaining N — 1 bits to represent the number’s
magnitude. For two’s complement, zero is considered a positive number. Two’s complement rep-
resentation offers the advantage of making successive additions or subtractions of one work
smoothly right through zero. Table 1-7 shows how small signed numbers can be represented by
three bits. All of the representations agree for positive values, but differ in the handling of zero
and negative values.

Table 1-7 Representations for Small Integer Values

Value Two’s Complement One’s Complement Sign and Magnitude

+3 011 011 011

+2 010 010 010

+1 001 001 001

0 000 000 and 111 000 and 100

-1 111 110 101

-2 110 101 110

-3 101 100 111

—4 100 too big to represent too big to represent

Notice that the two’s complement representation looks like a complete binary counting
sequence (0 to 7) that has been cut in half (0 to 3, and 4 to 7) and restacked. Also appreciate that
the range of integers that can be represented within N bits extends from the value N1 through
0to+2M 1 1.

No special action is required to form the two’s complement representation for a positive
integer, except to realize that the most significant bit must be an explicit zero. Forming the two’s
complement of a negative integer can be accomplished by subtracting the magnitude from zero,
for example:

0 000
—(+3)—(011 (subtraction, with due attention to “borrowings”)
-3 101

20 Chapter 1 ¢ Architecture and Implementation

Another method is to perform a bit-by-bit complementation of the positive number (including its
zero sign bit) and then to add 1 to that intermediate result:

+3 011 becomes 100 (intermediate result)
+(001) (addition, with due attention to “carries’)
-3 101

In either of these methods, any borrowing or carrying outside of the N-bit field is not to be writ-
ten as part of the final result.

Finding the hexadecimal representation of a negative integer proceeds similarly by men-
tally subtracting each digit from “F” and then adding 1 to that intermediate result:

+15502 3C8E becomes (C371 (intermediate result)
+(0001) (addition, with due consideration for “carries”)
—15502 C372

Fortunately, as with all such techniques, familiarity comes with practice.

You will find that an understanding of hexadecimal and binary number systems is helpful
to your study of architecture and assembly language programming, as well as other computer
concepts.

Summary

We had several goals in this introductory chapter. First we drew a clear philosophical distinction
between computer architectures and their particular implementations. In this view, an architec-
ture should last longer than any one implementation. The marketing names chosen by the com-
puter industry sometimes do not maintain a clear distinction between architecture and
implementation.

We discussed the pros and cons of assembly language as a means of programming a com-
puter, explaining that it provides the programmer with the closest view of intrinsic architectural
features. Learning assembly language is a good way to learn about computer architecture. We
showed what a simple algorithm looks like expressed in assembly language for Itanium architec-
ture, and contrasted that to high-level languages.

This chapter included two mathematical topics. First, the recently standardized prefixes
for naming certain powers of two, versus certain powers of ten, for describing computer storage
were introduced. We then discussed how computers typically represent signed and unsigned
integers, in anticipation of a continuing need for that understanding.

REFERENCES

Alpha Architecture Committee, Alpha Architecture Reference Manual, 3rd ed. Woburn, Mass.:
Butterworth-Heinemann (Digital Press), 1998.

REFERENCES 21

Amdahl, G. M., G. A. Blaauw, and F. P. Brooks, Jr., “Architecture of the IBM System/360,” IBM
Journal of Research and Development 8 (2), 87-101 (1967).

Blaauw, Gerrit A. and Frederick P. Brooks, Jr., Computer Architecture: Concepts and Evolution.
Reading, Mass.: Addison-Wesley, 1997.

Brunner, Richard A., VAX Architecture Reference Manual, 2nd ed. Bedford, Mass.: Digital
Press, 1991.

Eckhouse, Richard H. and L. Robert Morris, Minicomputer Systems: Organization, Program-
ming, and Applications (PDP-11). Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1979.

Evans, James S. and Richard H. Eckhouse, Alpha RISC Architecture for Programmers. Upper
Saddle River, N.J.: Prentice Hall PTR, 1999.

Hyde, Randall, The Art of Assembly Language Programming, 1996 [cited 25 September 2001].
Available from http://webster.cs.ucr.edu/.

Intel Corporation, “Basic Architecture,” IA-32 Intel Architecture Software Developer’s Manual,
Vol. 1, 2001.

Intel Corporation, History of the Microprocessor [cited 23 May 2002]. Available from http://
www.intel.com/intel/intelis/museum/exhibit/hist_micro/.

Kane, Gerry, PA-RISC 2.0 Instruction Set Architecture, Upper Saddle River, N.J.: Prentice Hall
PTR, 1996.

Kernighan, Brian W. and Dennis M. Ritchie, The C Programming Language, 2nd ed. Englewood
Cliffs, N.J.: Prentice Hall PTR, 1988.

Levy, Henry M. and Richard H. Eckhouse, Computer Programming and Architecture: The VAX,
2nd ed. Bedford, Mass.: Digital Press, 1989.

PA-RISC 1.1 Architecture and Instruction Set Reference Manual, 3rd ed. Hewlett-Packard Com-
pany, 1994 [cited 2 December 2001]. Available from http://h21007.www2.hp.com/dspp/
tech/tech_TechDocumentDetailPage_IDX/1,1701,958,00.html.

PDP-11 Architecture Handbook. Maynard, Mass.: Digital Equipment Corporation, 1982.

“Prefixes for Binary Multiples,” NIST Reference on Constants, Units, and Uncertainty, Physics
Laboratory, National Institute of Standards and Technology, 2000 [cited 25 September
2001]. Available at http://physics.nist.gov/cuu/Units/binary.html.

Rau, B. Ramakrishna, and Joseph A. Fisher, “Instruction-Level Parallel Processing: History,
Overview, and Perspective,” HP Technical Report HPL-92-132 (October 1992) [cited 9
March 2002]. Available from http://www.hpl.hp.com/techreports/.

Schlansker, Michael S., and B. Ramakrishna Rau, “EPIC: An Architecture for Instruction-Level
Parallel Processors,” HP Technical Report HPL-1999-111 (2000) [cited 27 January 2002].
Available from http://www.hpl.hp.com/techreports/.

Triebel, Walter, ltanium Architecture for Software Developers, Intel Press, 2000.

22 Chapter 1 ¢ Architecture and Implementation

The Virtual Museum of Computing, 2002 [cited 26 September 2002]. Available from http://
vmoc.museophile.com/.

We also list here several contemporary books that include a greater emphasis on computer hard-
ware than we provide in our book:

Carpinelli, John D., Computer Systems: Organization & Architecture. Boston, Mass.: Addison
Wesley Longman, Inc., 2001.

Clements, Alan, The Principles of Computer Hardware, 2nd ed. Oxford, UK: Oxford University
Press, 2000.

Hamacher, Carl, Zvonko Vranesic, and Safwat Zaky, Computer Organization, Sth ed. Boston,
Mass.: McGraw-Hill, 2002.

Hennessy, John L. and David A. Patterson, Computer Organization and Design: The Hardware/
Software Interface, 2nd ed. San Francisco, Cal.: Morgan Kaufmann Publishers, Inc., 1998.

Murdocca, Miles J. and Vincent P. Heuring, Principles of Computer Architecture. Upper Saddle
River, N.J.: Prentice-Hall, Inc., 2000.

Stallings, William, Computer Organization and Architecture: Designing for Performance, 6th
ed. Upper Saddle River, N.J.: Prentice Hall, Inc., 2003.

Tanenbaum, Andrew S., Structured Computer Organization, 4th ed. Upper Saddle River, N.J.:
Prentice Hall, Inc., 1999.

EXERCISES

1. Describe the architecture of a bicycle. What parts of the bicycle are not parts of the archi-
tecture? What are some implementation differences among different bicycles?

2. Consider the car rental industry. What aspects of automobile architecture are essential to
the ability of any driver to operate a randomly allocated rental car? What are some imple-
mentation differences among different automobiles that are not especially relevant to
either the driver or the rental agency?

3. Explain why harpsichords, organs, and accordions are not exemplars of “piano archi-
tecture.”

4. Why do you think that one computer manufacturer builds computers with a different
architecture from those of another manufacturer? What does this imply about the impor-
tance of well-standardized high-level languages?

5. What effect do you think the standardization of operating systems or command languages
might have on the future development of computer architectures?

6. Compute how much larger 1 EiB is than 1 EB, according to the IEC conventions for
binary multiples.

EXERCISES 23

7.

10.

11.

12.

13.

PA-RISC Architecture 1.1 defines extension registers that permit virtual addresses to be
16, 24, or 32 bits wider than the base level 32 bits. Express the three resulting maximum
virtual address sizes using appropriate binary prefixes from Table 1-2.

. Adapt the program SQUARES in a high-level language to compute the cubes of the first

five integers without using any explicit multiplication. Hint: An algorithm for N 3 can be
discovered by writing down the series 1, 8, 27, 64, ... and then inspecting the pattern of
first, second, and third tabular differences. This is only a pencil-and-paper exercise, but
save your work for future adaptation.

. Digital’s first highly successful minicomputer, the PDP-8, was a 12-bit machine. What

range of integers can be represented in a 12-bit unsigned binary number? In a 12-bit two’s
complement signed number?

Convert 101010101, into hexadecimal and octal. Convert 10A34 into octal and decimal.
Negate both values using 32-bit two’s-complement hexadecimal form.

Complete the following table by converting the given number in each row into the other
bases.

Decimal Binary Octal Hexadecimal
a. 100
b. 100
c. 100
d. 100

Perform the following hexadecimal arithmetic:

a.205-6

b. AF9 +9

c. 1A x B2 (use “long” multiplication, and think carefully about the “carries’)
d. 1CFF + F2FF

Write a high-level language program that inputs a decimal number and a radix and refor-
mats that decimal number in the specified radix. For example, if the inputs are 10 and 16,
the output should be A. Limit yourself to bases less than or equal to 16.

