Index

A
- access control subsystems SNMPv3 engines, 48–49
- Accounting Server
 - aggregation, 211
 - basics, 208–210
 - correlation, 211
 - mediation, 210
 - reports, 212
- actions, 151–156
- AF (assured forwarding), PHBs, 162
- agents (SNMP), 11, 13, 36–37
- aggregate objects, 33–34. See also LSPs; VLANs; VPNs
- alarms, 35
- Alcatel, network management software, 28
- AS (autonomous system) network, 152
- ATM (Asynchronous Transfer Mode), 4
 - LANE, 19
 - linked overviews, 99–101
 - PNNI, 21
 - ports, 24
 - PVCs, 25–26
 - scalability on virtual circuits, 85–86
 - SPVCC, 20
 - VPI/VCI, 20, 23
- authentication
 - in different versions, 62
 - protocols, 52
 - Security Server, 218–219
 - SNMP message format, 49–51, 60–61

B
- best effort QoS (quality of service), 117, 161
- Borland JBuilder, 107

C
- Charlotte's Networks routers, stress testing, 90
- CIM (Common Information Model), 159–160
- Cisco network management software, 28
 - stress testing, 90
- CLI (command-line interface), 13
 - EMS compatibility, 30
 - Telnet, 32
- coarse granularity QoS (quality of service), 117–119
- COM (Component Object Model), 108
- command generator and responder SNMPv3 applications, 49
- Configuration Server
 - basics, 202–203
 - connection table updates, 204–205
 - creating network objects, 205
 - secure users, 203–204
 - server database tables, 206
 - software structure, 208
 - topology updates, 205–206
 - trace files, 204
- ContextID and ContextName objects (SNMP), 49, 51
 - converged networks, 33–34
- COPS (Common Open Policy Service), 156–157
- CORBA specifications, OMG, 107–108
 - NMS middleware, 225
- CPE (customer premises equipment), SP networks, 24
cross-connects
 LERs, 74
 LSRs, 74
 MPLS, 111, 113, 263–264
CTI (computer-telephone integration), 7

D
 DEFVAL MIB object attribute, 40
 DEN (Directory-Enabled Networking), 158–160
 DES (Data Encryption Standard) keys, 49, 60
 DESCRIPTION MIB object attribute, 40
 DiffServ (Differentiated Services) QoS, 24, 117–119, 161
 attacks, 165
 MPLS, 164–165
 discovery, 34–35
 and mapping (NNM), 172–173
 Discovery Server, 220
 dispatchers, SNMPv3 engines, 48–49
 DMI (Desktop Management Interface), 32, 33

E
 EF (expedited forwarding), PHBs, 162
 EGP (Exterior Gateway Protocol), 102
 EMS (element management systems), 13
 management system value pyramid, 28–31
 Telnet, 32
 VLANs, 9
 encryption, SNMPv3, 52, 53, 60
 EngineBoots objects (SNMP), 49, 51
 EngineID objects (SNMP), 49, 51
 EngineTime objects (SNMP), 49, 51
 enterprise networks
 categories of networks, 1
 components, 4–5
 data flows, 6
 deployment
 centralized, 6–7
 geographically distributed, 5
 disadvantages, 9
 features, 7
 intranets, 6
 lifecycles, 7
 migration toward IP networks, 69–70
 scalability issues, 89
 services provided, 2–3
 storage planning, 8
 unified messaging, 6
 entities (SNMP). See agents (SNMP)
 EROs (Explicit Route Objects), 111–112
 Ethernet ports, 24
 events, 35

F
 Fault Server
 basics, 197–200
 database tables, 200–201
 software structure, 201
 topology updates, 201–202
 faults, 35
 FCAPS areas, OSI model, 26–28, 78
 FTN MIB, 299–300
 NMS stovepipes, 140–141
 software layers, 95
 fine granularity QoS (quality of service), 117–118
 Foundry Networks routers, stress testing, 90
 FTN (FEC-To-NHLFE MIB)
 basics, 292–295
 example, 295–296
 mplsFTNTable setup, for LSP redirection, 296–298
 mplsFTNTable setup, for tunnel redirection, 298

G
 GET operations
 JDMK sample program, 248
 Visual C++ sample program, 240
 GetBulkRequest messages (SNMP), 44, 56–57, 62
 GETNEXT operations
 JDMK sample program, 248–249
 Visual C++ sample program, 240
 GetNextRequest messages (SNMP), 44, 55–56, 62
 GetRequest messages (SNMP), 44, 54–55, 60
 GetResponse messages (SNMP), 44, 86

H
 Hewlett-Packard OpenView, 10, 28
 NNM
 backup and restore, 179
 basics, 168–169
 data warehousing, 178
 discovery and mapping, 172–173
 integration with other software, 187
 Java-based Web interface, 180–181
 mediation, 170–171
 MIBs, 183
 monitoring, 174
 MPLS support, 183
 notification processing, 176
 policy support, 184
 programmability, 187–188
Hewlett-Packard OpenView
NNM (continued)
reliability, 185
reporting, 177
host routing tables, 154

IDL (Interface Definition Language), 31
management software, 108
IGP (Interior Gateway Protocol), 102
IIOP (Internet Inter-Orb Protocol), 107–108
in-segments
LERs, 74
LSRs, 74
MPLS, 111, 113, 261
InetAddressType MIB object, 41
information models
CIM, 159–160
DEN, 158–160
InformRequest messages (SNMP), 44, 57–60
interfaces (IP networks), 101
interfaces versus ports, 24–25
IntServ (Integrated Services) QoS, 117–118, 161
IP networks
layer 3, OSI model, 21–22
linked overviews, 101–102
managed objects, 101–102
migration toward IP networks, 69–70
MPLS routing protocols, 114
QoS levels, 160–164
routing table controls, 151–155
SLAs, 160–161
ipInReceives object, 39
IS-IS (Intermediate System–Intermediate System) routing protocol, 73
IP protocols, 102
MPLS, 114
traffic engineering, 116

J–K
Java RMI (Remote Method Invocation), 108
JBuilder (Borland), 107
JDMK (Java Development Management Kit) sample program
extensions, 251–253
GET operations, 248
GETNEXT operations, 248–249
SNMP manager, 245–247
SNMP manager, synchronous, 249

versus Visual C++ SNMP sample program,
249–251
Juniper routers, stress testing, 90

L
label operations (MPLS), 114–115
encapsulation, 115–116
LANE (ATM LAN Emulation), 19
LANs (large area networks), 3
layer 2, OSI model, 17–21
VPNs
scaleability, 83–85
layer 2.5, OSI model, 22–23
layer 3, OSI model, 21–22
VPN scaleability, 85
LEAP (Lightweight Flow Accounting Protocol), 299
LERs (label edge routers)
MIB scalability, 87–89
MPLS nodes, 71–75
stress testing networks, 90
lexicographic ordering, MIBs, 43
LSPs (label switched paths), 20, 21
MIB scalability, 87–89
MPLS
components, 111–113
DiffServ support, 164–165
service-level network components, 300
stress testing networks, 90
LSRs (label switching routers)
MIB scalability, 87–88
MPLS nodes, 71–75
stress testing networks, 90

M
MacAddress object, 39
managers (SNMP), 36, 37–39
MAX-ACCESS MIB object attribute, 40, 41
MaxMessageSize objects (SNMP), 49–50, 54
MD5 protocol, SNMP privacy settings, 49, 52, 60–61
message subsystems SNMPv3 engines, 48–49
MessageFlags objects (SNMP), 49–51, 53–55
MessageID objects (SNMP), 49–50, 54
MessageSecurity objects (SNMP), 49, 51, 54
MessageVersion objects (SNMP), 49–50, 54
MIBs (Management Information Bases), 2
basics, 143, 288
centralizing to match NE features, 146
columns
default values, 291–292
tightly coupled intercolumn dependencies, 289–290
component of SNMP, 36, 39–40
Configuration Server support, 206–207
extensions, 66
FTN MIB
 basics, 292–295
 example, 295–296
 mplsFTNTTable setup, for LSP redirection, 296–298
 mplsFTNTTable setup, for tunnel redirection, 298
lexicographic ordering, 43
manipulating with scripts and software modules, 10–11
necessary for management, 10–12
NMS support features, 181–182
objects
 attributes, 40–42
 default values, 144–145
 management, 11–12, 66, 182
 semantic dependencies, 144
OIDs, 42–43
quality, 15–16
scalability, 86, 87–89, 291–292
 scalable aggregated services, 175
sections, 64–65
versus standard operating systems, 66–67
textual conventions, 39
thin software layers, 291–292
upgrades following MIB changes, 105–106
WALK operations, 241–242
Microsoft SMS (Systems Management Server), 6, 16, 32
Monitoring Server, 220–221
MPLS (Multiprotocol Label Switching) networks, 1–2
basics, 68–71
creating LSPs, 88
cross-connects, 111, 113, 263–264
deploying on NEs, 256–257
DiffServ, 164–165
EROS, 111–112
example, 258–261
in-segments, 111, 113, 261
interfaces, 257–258
label operations (MPLS), 114–115
encapsulation, 115–116
label stacks, 264–265
layer 2.5, OSI model, 22–23
LERs, 71–75
LSPs, 20, 21, 111–113
 configuring through LSRs, 266–267
 creating with LSR MIB, 267–273
 examples, 258–266
 standards, 284
 and tunnels, 283
main components, 110–111
MIBs, 255–256
 FTN MIB, 292–299
 nextObjectIndex counter, 283–284
 standards, 284
migration to IP networks, 69–70
nodes, 71
out-segments, 111, 113, 262–263
protocols, routing and signaling, 114
QoS, 116–119
resource blocks, 111–112
scalability, 119–122
traffic engineering, 116, 117, 119–122, 265
tunnel table objects, 120–122
 mplsTunnelHopTable, 282
 mplsTunnelResourceTable, 278–279
 mplsTunnelResourceTable, configuring, 281–282
 mplsTunnelTable, 273–278
 mplsTunnelTable, configuring, 280–281
tunnels, 111–113, 119–122
 creating, 283
 standards, 284
mplsFTNAddrType MIB object, attributes, 40–42
mplsFTNTTable object
 setup for LSP redirection, 296–298
 setup for tunnel redirection, 298
mplsInSegmentTable object, 261
mplsInterfaceConfTable object, 259–261
mplsInterfacePerfTable object, 266
mplsLabelStackTable object, 264–265
mplsOutSegmentTable object, 262–263
mplsTunnelHopTable object, 282
mplsTunnelIncludeAffinity object, 145
mplsTunnelIndexNext object, 87, 147
mplsTunnelResourceTable object, 278–279
 configuring, 281–282
mplsTunnelTable object, 273–278
 configuring, 280–281
multiservice switches, 138
 operational skill set requirements, 110
testing, 90

N

NBI (Northbound Interface), 226
 integration with OSS layers, 304–305
NEs (network elements)
 advantages and disadvantages, 90–91
basics, 67–68, 148–149
NEs (network elements) (continued)
 CLI compatibility, 30
 configuring, 223–225
 database backup and restore, 222–223
 feature of enterprise networks, 7
 manageability, 15–16
 managing newly commissioned and legacy NEs, 11
 shrink-wrapped solutions, 303–304
 software distribution, 221–222
nextObjectIndex object, 87, 283–284
NICs (network interface cards), 7
NMS (network management systems), 1–2
 Accounting Server
 aggregation, 211
 basics, 208–210
 correlation, 211
 mediation, 210
 reports, 212
 advantages, 16–17
 basics, 10–14
 components, 230–231
 boundaries, 191
 business processes, 188–189
 Configuration Server
 basics, 202–203
 connection table updates, 204–205
 creating network objects, 205
 MIB support, 206–207
 secure users, 203–204
 server database tables, 206
 software structure, 208
 topology updates, 205–206
 trace files, 204
 data and code combinations, 81–83
 data model, 146–147
 distributed clients and servers, 147–148
 data warehousing, 177–178
 database backup and restore, 178–179
 and upgrade, 223
 discovery, 34–35, 171–172
 Discovery Server, 220
 Fault Server
 basics, 197–200
 database tables, 200–201
 software structure, 201
 topology updates, 201–202
 goals, 35
 integration with other software, 185–187
 Java
 RMI, 179–180
 trends towards Java-based NMS, 226–227
 management system value pyramid, 28–32
 EMS, 28–31
 OSS, 28–29, 31–32
 mapping, 171–172
 MIBs, 181–182
 middleware, 225
 migration toward IP networks, 69–70
 monitoring, 173–174
 Monitoring Server, 220–221
 MPLS support, 183
 NBI, 226
 notifications, 35
 processing, 176
 SNMPv3, 57–60
 object creating using software abstraction, 301–302
 operational skill set requirements, 108–110
 OSI model
 FCAPS areas, 26–28
 layer 2, 17–21
 layer 2.5, 22–23
 layer 3, 21–22
 Performance Server
 aggregation, 213–214
 basics, 212–213
 correlation, 214
 database tables, 216
 reports, 214–215
 SLA alerts, 215–216
 topology updates, 216
 policy-based (PBNM), 149–150
 architectural elements, 150–151
 COPS, 156–157
 network processors, 157–158
 policies, 155–156
 policy support, 184
 ports versus interfaces, 24–25
 programmability, 187
 reasons for using, 25–26
 reliability, 184–185
 reporting, 176–177
 requirements for high-level support, 136–137
 security, end-to-end, 302–303
 Security Server
 access applications, 217–218
 basics, 217
 permitted views, 219
 privilege levels, 219
 services management, 137–139
 shrink-wrapped solutions, 303–304
 software components, 193–197
software development
basics, 103–104
class design, 107
CORBA-based, 107–108
data analysis, 104–105
deployment software, 135
GUIs, 107
insulating applications from low-level code, 108
object-oriented development, 106–107
UML, 106–107
upgrades following MIB changes, 105–106
software development skill sets
basics, 91–93
cross-functional cooperation, 133–136
distributed creative problem solving, 95–96
domain expertise, 97–98
linked overviews, ATM view, 99–101
linked overviews, basics, 98–99
minimal code changes, 103
short development cycles, 102–103
solution engineering, 125–129, 306–307
solution engineering, example, 131–133
solution engineering, expertise in general-purpose software, 129–130
solution engineering, thinking in chunks, 130–131
solution mindset, taking ownership, 96–97
software vendors, 28
stovepipe structure, 139–143
uses, 189–190
VLANs, 9
workflows, 188–189
XML data representation, 225
NNM (Network Node Manager) Hewlett-Packard
OpenView
backup and restore, 179
data warehousing, 178
discovery and mapping, 172–173
integration with other software, 187
Java-based Web interface, 180–181
MIBs, 183
monitoring, 174
MPLS support, 183
notification processing, 176
policy support, 184
programmability, 187–188
reliability, 185
reporting, 177
nodes (IP networks), 101
cross-connects, 111, 113
in-segments and out-segments, 111, 113
Nortel network management software, 28
notifications, 35
notification originator and receiver SNMPv3 applications, 49
processing, 176
SNMPv3, 57–60
O
object attributes, MIBs, 40–42
OBJECT IDENTIFIER MIB object attribute, 40
object-oriented software development, 106–107
OIDs (object identifiers), MIBs, 42–43
OMG (Object Management Group)
CORBA specifications, 107–108
IDL, 108
OpenView (Hewlett-Packard), 10, 28. See also NNM
OSI model
FCAPS areas, 26–28, 78
FTN MIB, 299–300
NMS stovepipes, 140–141
software layers, 95
layer 2, 17–21
VPN scalability, 83–85
layer 2.5, 22–23
layer 3, 21–22
VPN scalability, 85
network management standards, 35
OSPF (Open Shortest Path First) routing protocol, 73
IP protocols, 102
MPLS, 114
traffic engineering, 116
OSS (Operational Support System)
integration with NBI, 304–305
management system value pyramid, 28–29, 31–32
and NBI, 226
out-segments
LSRs, 74
MPLS, 111, 113, 262–263
P
PBNM (policy based network management), 149–150
architectural elements, 150–151
components, triggers and actions, 151–156
COPS, 156–157
network processors, 157–158
policies, 155–156
PDPs (policy server/decision points), 150, 156–157
PDDs (protocol data units), 43–44
inform fields, 59–60
trap fields, 58–59
PEPs (policy enforcement points), 150, 156
PHB (per-hop-behavior), 118, 161–162, 164
PIBs (Policy Information Bases), 157
PNNI (Private Network-to-Network Interface), 21
ports versus interfaces, 24–25
privacy settings, SNMP message format, 49–51
protocols (IP networks), 102
proxy forwarder SNMPv3 applications, 49
PSTNs (Public Switched Telephone Networks), 5
PVCs (permanent virtual circuits)
 ATM, 25–26
Q
QA (quality assurance), role in network management, 305
QoS (quality of service)
 interface level, 24
 IP networks, 160–164
 MPLS, 116–119
R
RMI (Remote Method Invocation), 108
Routing Policy Specification Language, 153
RowStatus object, 39
RPCs (remote procedure calls), 82
management software development, 108
S
SANs (storage area networks), 5
 feature of enterprise networks, 7
 incompatible management systems, 10
 lifecycle stages, 8
scalability
 ATM virtual circuits, 85–86
 MIBs, 86, 87–89, 291–292
 MPLS, 119–122
 VPNs
 layer 2, OSI model, 83–85
 layer 3, OSI model, 85
Security Server
 access applications, 217–218
 authentication, 218–219
 permitted views, 219
 privilege levels, 219
security subsystems SNMPv3 engines, 48–49
serial link-based menu systems, 32, 33
SET operations, Visual C++ sample program, 241
SetRequest messages (SNMP), 44, 57
SHA (Secure Hash Algorithm) protocol, 49, 52, 60–61
SLA (service level agreements), 17, 21
alerts for Performance Server, 215–216
QoS, 160–161
SMI (Structure of Management Information)
 SPPI, 157
 version 2, 39
SMS (Systems Management Server), Microsoft, 6, 16, 32
SNMP manager
 JDMK sample program, 245–247
 synchronous manager, 249
 Visual C++ sample program, 233–236
SNMP (Simple Network Management Protocol), 1
agents, 11, 13, 36–37
applications
 MIB browsers, 62–66
 types, 49
configuring Windows NT/2000 platform, 231
de facto standard for network management, 35–36
disadvantages of using SNMP, 14–15
manageability of NEs, 15–16
managers, 11, 36, 37–39
message exchanges
 basics, 53
 GetBulkRequest, 44, 56–57
 getNextRequest, 44, 55–56
 getRequest, 44, 54–55
 getResponse, 44
 informRequest, 44, 57–60
 setRequest, 44, 57
 trap, 44, 57–60
message format
 common data, 49–51
 context, 49, 52–53
 PDUs, 49, 53
 PDUs, inform fields, 59–60
 PDUs, trap fields, 58–59
 security model data, authentication, 49–52, 60–62
 security model data, general, 49, 51
 security model data, privacy, 49–52, 60–61
MIBs, 36, 39–40
 lexicographic ordering, 43
 manipulating with scripts and software modules, 10–11
 necessary for management, 10–12
 object attributes, 40–42
 object management, 11–12
 OIDs, 42–43
 quality, 15–16
 versus Microsoft SMS, 32
NMS discovery, 34–35
PDUs, 43–44
problems, 61
sample program, JDMK
extensions, 251–253
GET operations, 248
GETNEXT operations, 248–249
SNMP manager, 245–247
SNMP manager, synchronous, 249
sample program, Visual C++, 236–238
batch files, combining, 243
extensions, 251–253
GET operations, 240
GETNEXT operations, 240
versus JDMK, 249–251
MIB WALK operations, 241–242
security violations, 243–245
SET operations, 241
setup, 231–232
SNMP manager, 233–236
TRAP operations, 242–243
SNMPv3 engine, 48–49
SNMPv3 security versus view-based access controls, 53
versions, 44, 61–62
SOAP (Simple Object Access Protocol), 225
SP (service provider) networks
categories of networks, 1
CPE, 24
migration toward IP networks, 69–70
reasons for using management, 25–26
SPPI (Structure of Policy Provisioning Information), 157
SPVCC (Switched Permanent Virtual Channel Connection), 20
STATUS MIB object attribute, 40
storage. See also SANs
tableau network planning, 8
StorageType object, 39
subnets (IP networks), 101
SYNTAX MIB object attribute, 40, 41

T
TCP/IP. See IP networks
TDM (time-division multiplexing), 20
Telelogic CM Synergy, 136
Telnet, 32
TestAndIncr object, 39
textual conventions, MIBs, 39
thin software layers
MIBs, 291–292
software solutions, 306
TLS (Transparent LAN Service), 132
TOM (Telecommunications Operations Map), 31
traffic engineering, MPLS, 116, 117, 119–122
Trap messages (SNMP), 44, 57–60, 86
TRAP operations, Visual C++ sample program, 242–243
triggers, 151–155
TruthValue object, 39
tunnels, MPLS, 111–113, 119–122

U
UML (Uniform Modeling Language), 106–107
UNIX platform, network management software, 28
UserName objects (SNMP), 49, 51

V
VCI (Virtual Channel Identifiers), 20, 23
versions of SNMP, 44
Visual C++ sample program, 236–238
batch files, combining, 243
extensions, 251–253
GET operations, 240
GETNEXT operations, 240
versus JDMK, 249–251
MIB WALK operations, 241–242
security violations, 243–245
SET operations, 241
setup, 231–232
SNMP manager, 233–236
TRAP operations, 242–243
VLANs (virtual LANs), 3, 8–9
aggregate objects, 33–34
feature of enterprise technology, 8–9
layer 2, OSI model, 17–21
multisite example, using SP ATM/MPLS cloud,
131–133
NMS discovery, 34
service-level network components, 300
VoIP (voice over IP), 3
VPI (Virtual Path Identifiers), 20, 23
VPLS (Virtual Private LAN Service), 131–133
VPNs (virtual private networks)
OSI layer 2 and 3 scalability, 83–85
service-level network components, 300

W–Z
WALK operations, MIBs, 42, 241–242
WANs (wide area networks)
MPLS, 1
VoIP, 3
Web Services, 225
Windows NT/2000, network management software, 28
XML data representation, 225