

1

O N E

Microsoft .NET Framework

M

icrosoft .NET has been considered a paradigm shift in the world of Web
application development and deployment. Web services are being envisioned
as the next big step in Internet and Internet technology. Microsoft .NET sim-
plifies the development of Web services; in fact, development of Web services
has been one of the major design goals behind .NET. Let’s understand what
Microsoft .NET Framework is and what benefits it gives to the application
developer in terms of development efforts and platforms. This chapter gives
an introduction to the .NET Framework, and it gives the reader an overview
of the Common Language Runtime (CLR), Common Type System (CTS), and
Common Language Specification (CLS). The chapter also gives an overview of
the .NET Framework class library.

There are many books that highlight the importance of .NET over earlier
technologies. Hence, in this chapter rather than listing all the features of .NET
in detail, we emphasize those key aspects of .NET that need to be considered
while planning for migration of existing applications to .NET. In this book we
have included as many code snippets as possible, highlighting the syntactical
differences between the languages being discussed and then supplying
workarounds wherever feasible.

One of the main objectives of this chapter is to make the reader aware
of the steps that must be followed while migrating any application from one
technology to another.

Need for .NET Framework

Before understanding the Microsoft .NET Framework, it is important to under-
stand the current limitations of Microsoft technologies as well other technolo-
gies such as Java.

5281 Bookfile Page 1 Monday, September 23, 2002 5:10 PM

Prentice Hall PTR
This is a sample chapter of Migrating to .NET: A Pragmatic Path to Visual Basic .NET, Visual C++ .NET, and ASP.NETISBN: 0-13-100962-1For the full text, visit http://www.phptr.com©2002 Pearson Education. All Rights Reserved.

2

Chapter 1

• Microsoft .NET Framework

In the current Internet scenario, various applications run on multiple net-
works. These applications could have been written using different languages
provided by various vendors. Microsoft provides different programming lan-
guages such as Visual Basic and Visual C++ for application development. For
example, a manufacturing organization would have different systems, such as an
inventory management system, a bill of material systems, and a general ledger
system, all implemented using various technologies available for application
development. These systems need to be integrated to form a higher-level enter-
prise information system for an organization. To do so, application developers
had to use technologies such as Microsoft Distributed Component Object Model
(DCOM), Component Object Request Broker Architecture (CORBA), Java
Remote Method Invocation (RMI), and so on. However, these distributed tech-
nologies are very tightly coupled to the programming languages in which these
applications have been developed. This leads to problems in application integra-
tion if the applications have been developed using disparate technologies.

The other limitation with earlier technologies was that cross-language
interoperability was very limited. For example, if classes had been developed
in Visual C++, it was not possible to develop new classes in Visual Basic that
extended from those developed in Visual C++. Therefore, developers would
have to rewrite the same logic for the classes in all the languages that were
supported in their organization. Functional reusability was supported, but true
code reusability was not available in earlier technologies; therefore, a devel-
oper was forced to learn all languages that were being used for application
development in the organization.

Developers who have developed applications using Microsoft technolo-
gies have extensively used Component Object Model (COM) technology to
develop components. These components were used mainly to encapsulate
the business logic of the application. COM technology suffered from the fol-
lowing limitations:

•

Registration of COM components.

 COM components had to be
registered on the target machine before they could be used by the
application. The application had to look up the Windows registry to
locate and load the COM components.

•

Unloading COM components.

 COM objects also required a spe-
cial logic for freeing up the objects from memory. This method is
known as reference counting of COM objects. It is used to keep
track of the number of active references. When an object’s reference
count reaches zero, the object is removed from memory. The major
problem that arises out of this situation is that of circular reference.
If circular references exist between two COM components, they
would not be freed from memory.

•

Data link library (DLL) hell.

 Whenever applications that use COM
components were installed on a machine, the installation process
would update the registry with the COM components information.
Thus, there was a chance that these DLLs would be overwritten

5281 Bookfile Page 2 Monday, September 23, 2002 5:10 PM

Bui lding Blocks of .NET

3

when some other applications were installed on the same computer.
Therefore, an application that had been referring to one particular
DLL would refer to the wrong DLL. This caused a major problem
when an application was referring to particular version of a DLL.

Microsoft .NET has been developed keeping the above limitations in mind
and making Web services development one of its major goals.

Building Blocks of .NET

Figure 1-1 shows building blocks of Microsoft .NET platform. A brief explana-
tion of each of these building blocks is presented below.

The .NET Framework Features

Microsoft .NET Framework is a computing platform for developing distributed
applications for the Internet. Following are the design goals of Microsoft .NET
Framework:

Figure 1-1 Building blocks of Microsoft .NET platform.

Microsoft. NET Framework

Windows 2000

Components

Web Forms Web Services

Internal/External Web Service
Microsoft. NET foundation

Web Service
Microsoft. NET Enterprise

Servers

Protocols:

HTTP, HTML,
XML, SOAP,
UDDI

Development
Tools:

Visual
Studio.NET,
Notepad

Web Clients
Consumer

Applications

5281 Bookfile Page 3 Monday, September 23, 2002 5:10 PM

4

Chapter 1

• Microsoft .NET Framework

1. To provide a very high degree of language interoperability
2. To provide a runtime environment that completely manages code

execution
3. To provide a very simple software deployment and versioning model
4. To provide high-level code security through code access security

and strong type checking
5. To provide a consistent object-oriented programming model
6. To facilitate application communication by using industry standards

such as SOAP and XML.
7. To simplify Web application development

Visual Studio .NET

Visual Studio .NET is a new development environment and a rapid applica-
tion development (RAD) tool that is fully supported by the MSDN developer
service and Windows DNA 2000 servers. It is an integrated development envi-
ronment (IDE) that is common to all the Microsoft programming languages in
the .NET Framework. Visual Studio .NET is based on XML and it uses XML for
data storage and formatting.

Visual Studio .NET enables the easy deployment of highly distributed,
programmable services that run across stand-alone machines, in corporate
data centers, and across the Internet. The following types of applications can
be created using it:

•

Console applications

•

Rich Windows graphical user interface (GUI) applications

•

Class library

•

Web applications

•

ASP .NET Web services

•

Windows as well as Web control library

•

Windows services

Apart from good debugging features, Visual Studio .NET has features
such as source code version control through Visual Source Safe (VSS) and true
IntelliSense.

NET Enterprise Servers

The server infrastructure for .NET Framework, including Windows and the
.NET Enterprise Servers, is a suite of infrastructure applications for building,
deploying, and operating XML Web services. Key technologies include sup-
port for XML, scale-out, and business process orchestration across applica-
tions and services. These servers include

•

Application Center 2000 to enable scale-out solutions

•

BizTalk Server 2000 to create and manage XML-based business pro-
cess orchestration across applications and services

5281 Bookfile Page 4 Monday, September 23, 2002 5:10 PM

Introduct ion to Microsoft .NET Framework

5

•

Host Integration Server 2000 for accessing data and applications on
mainframes

•

Mobile Information 2001 Server to enable use of applications by
mobile devices like cell phones

•

SQL Server 2000 to store and retrieve structured XML data

Microsoft .NET Building Block Services

The building block services are a set of XML Web services that are used to
move control of user data between various applications and users. They
enable personalized simplicity and consistency across the various applica-
tions, services, and devices while ensuring that user consent is the basis for
all transactions.

The building block services include Passport (for user identification) and
services for message delivery, file storage, user-preference management, cal-
endar management, and other functions. Microsoft will offer a few building
block services in areas that are critical to the infrastructure of .NET Frame-
work; a wide range of partners and developers are expected to significantly
expand the set of building block services. You’ll also see corporate and verti-
cal building block services built on the .NET platform.

Introduction to Microsoft .NET Framework

Microsoft .NET Framework is a new programming model that simplifies appli-
cation development for the highly distributed environment of the Internet.
The major components of the .NET Framework are the CLR and the .NET
Framework class library. Figure 1-2 shows the architecture of the Microsoft
.NET Framework and illustrates features such as ADO.NET, Windows Forms,
Web Forms, and Web services. These are new features that have been intro-
duced in the Microsoft .NET Framework.

Windows Forms are used in developing rich GUI desktop .NET applica-
tions. Web Forms are used to develop Web applications. With the introduction
of Web Forms, the .NET Framework brings the ease of drag and drop design-
ing into Web application development.

ADO.NET brings with it the concept of disconnected data access. This
vastly improves the performance of ASP.NET applications. ADO.NET compo-
nents have been logically grouped into data access and data manipulation
components. The data access components first access the data. Then a con-
nection with the data source is no longer required. Once data has been
retrieved, the data manipulation components manipulate the data according
to the business logic. The ADO.NET classes are found in the

System.Data

namespace. The concept of namespaces is covered in a later section in this
chapter.

5281 Bookfile Page 5 Monday, September 23, 2002 5:10 PM

6

Chapter 1

• Microsoft .NET Framework

The CLR, CTS, and the CLS are explained in more detail in the next sub-
sections.

Introduction to the CLR

The CLR is the execution environment provided by the Microsoft .NET Frame-
work. It provides many services such as

•

Automatic garbage collection

•

Code access security

•

Simplified versioning

•

Simple and reliable deployment

•

Deep cross-language interoperability

•

Debugging across different languages

•

Performance

•

Scalability

Because the CLR manages the code execution, all the code that is
targeted for the CLR is known as managed code. Managed code emits
metadata along with the executable. This metadata is used to describe
the types (classes) and members used in the code, along with all the
external references used in executing the code. The CLR uses this meta-

Figure 1–2 Microsoft .NET Framework.

Common Language Runtime

ADO.NET: Database and XML Operations

Microsoft.NET Framework Base Class Library

ASP.NET Web Forms & Web
Services

Common Language Specifications
&

Common Type System

Windows Forms

VB.NET C# VC++.NET J# ...

5281 Bookfile Page 6 Monday, September 23, 2002 5:10 PM

Introduct ion to Microsoft .NET Framework

7

data to load the classes during execution and resolve method invocations
during runtime.

The CLR provides automatic garbage collection of the objects that have
been loaded into memory. All objects that are created via the

new

 operator
are allocated memory on the heap. A program can allocate as many objects as
are required by the program logic. However, when an object is no longer
required, there must be some mechanism to free up the memory that was
occupied by the object.

This is accomplished in the CLR via a program called garbage collector,
which collects all objects in memory that have no references. This program
runs as a low-priority thread in the background process and collects all unref-
erenced objects. Because memory management is automatic, the chances for
memory leaks in the program are minimized. However, the time when gar-
bage collector would actually release the objects from the memory is not
known. This concept is known as nondeterministic garbage collection
because it cannot be determined in advance when the objects would be
released from memory.

If sufficient memory is not available for creating new objects, the CLR
throws an exception that can be caught and gracefully handled by the
application.

Code Access Security (CAS), as the name suggests, is used to control the
access that the code has to system resources. The CLR has a runtime security
system. Administrators can configure policy settings by specifying the
resources that can be accessed by the code.

A call stack is created that represents the order in which the assemblies
get called. The CLR’s security system walks the stack to determine whether
the code is authorized to access the system resources or perform certain
operations. If any caller in the call stack does not have the requisite permis-
sion to access the specific system resources, a security exception is thrown
by the CLR.

Simplified versioning is another feature provided in the .NET Frame-
work. It supports versioning and also provides for side-by-side execution of
different versions of the same component. The specific versions of the assem-
bly and the dependent assemblies are stored in the assembly’s manifest. The
copies of the same assembly that differ only in version numbers are consid-
ered to be different assemblies by the CLR. Assemblies are explained in more
detail in the later sections.

Simplified deployment is one of the features provided in the .NET
Framework. The most important point to mention is that .NET components
do not need to be registered in the Windows registry. All code generated in
the .NET Framework is self-describing because assemblies contain the man-
ifest and metadata information. This information contains all the data about
the dependencies of the assembly and the specific versions of the compo-
nents that these assemblies would use at execution time; therefore, multiple

5281 Bookfile Page 7 Monday, September 23, 2002 5:10 PM

8

Chapter 1

• Microsoft .NET Framework

versions of the same components can coexist. The CLR enforces the version-
ing policy.

Cross-language interoperability is an important feature, and it was one of
the design goals of the .NET Framework. This feature is possible because of the
CTS and CLS. The CTS is explained in more detail in the next subsection.

Visual Studio .NET allows for debugging across an application consisting of
different languages targeted for the CLR. In fact, the IDE also allows for debug-
ging an application in which managed code interacts with unmanaged code.

CLR ensures that performance of the code execution is optimized. Com-
piled code is stored in cache. When the same code is called next time, this
code is loaded into memory from cache. This advantage stands out more in
the case of ASP.NET applications than for ASP applications. ASP code was
interpreted every time an ASP page was requested. In ASP.NET, the code is
compiled only once when the page is requested for the first time. This
ensures that performance is optimized.

The .NET Framework also provides some classes for tracking the perfor-
mance of the .NET applications. These classes are known as performance
counters. The .NET Framework provides performance counters for getting
information on exception handling, interoperation with unmanaged code,
loading and unloading code into memory, locking and threading, memory,
networking operations, and so on. These performance counters help to fine-
tune the performance of the .NET applications.

Introduction to the CTS

The CTS defines how types are declared, used, and managed in the runtime
environment. The CTS is the key element for the CLR’s support of cross-
language integration. The common type system is used to

•

Enable cross-language integration, type safety, and high-performance
code execution.

•

Define rules that languages should follow. This helps to ensure that
objects written in different languages can interact with each other.

The Microsoft .NET Framework supports two categories of types, refer-
ence and value. As the name suggests, reference types contain a reference to
memory address of a value stored in memory. If any changes are made to the
value using the reference address, the original value is changed in memory.
Reference type variables are allocated in the heap memory.

Value types, on the other hand, contain the actual value. If the value of
one variable (of value type) is assigned to another variable (of value type),
the contents of the first variable are copied into the second variable. If any
changes are made in the second variable, the contents of the first variable are
not changed. Value type variables are allocated on the stack. Value types are
stored more efficiently as primitive types. Value types are derived from the

5281 Bookfile Page 8 Monday, September 23, 2002 5:10 PM

Introduct ion to Microsoft .NET Framework

9

System.ValueType

 class. Because of this, the value type variables can have
fields, properties, and events, just as reference type of variables.

Microsoft .NET has introduced a concept called boxing and unboxing.
Boxing involves the process of converting a value type variable into a refer-
ence type variable. Boxing a variable of a value type allocates an object
instance on the heap and copies the value of the value type variable into the
heap. Unboxing is the explicit conversion from the object type to a value
type. During unboxing an

InvalidCastException

 might be thrown if the
source argument is null or is a reference to an incompatible type.

A type definition includes the type name, visibility, base type, interfaces
implemented by the new type, and members of the new type. A type needs to
be identified by a name. It can have global access; that is, all other assemblies
can access the type if the accessibility of the type is public. If the accessibility
of the type is assembly, the type can be accessed only within the assembly in
which the type is defined. A type can inherit from other types and extend the
behavior of the base types. A type can inherit only from a single type. It can
also implement any number of interfaces. In addition, attributes can be used
with the types to provide more information about the types.

Value types are built-in data types provided by the programming lan-
guages supported in the Microsoft .NET Framework.

Integer

,

Float

, and

Double

 are some examples of built-in data types and are value types. User-
defined value types can be defined.

Structure

 is a common example of a
user-defined value type that is supported in Visual Basic .NET.

Some of the reference types found in the Microsoft .NET Framework are
the classes, arrays, pointers, delegates, and so on.

Introduction to the CLS

The CLS rules define the basic language features required by many applica-
tions and promoting language interoperability. The CLS defines a subset of
the CTS (explained in the previous section). All languages targeted for the
Microsoft .NET Framework comply with the CLS. This ensures language
interoperability between the various languages. The CLS also establishes
requirements for CLS compliance; these help developers determine whether
their managed code conforms to the CLS.

The CLS rules are normally used from the perspective of the high-level
source code and tools, such as compilers, that are used in the process of gen-
erating assemblies in the Microsoft .NET Framework.

The CLS rules apply only to externally visible items. Within a single
assembly there are no restrictions to the programming techniques that are
used. Code can be marked as CLS compliant or otherwise with the help of
custom attributes.

An assembly can contain many types. If an assembly is marked as
CLS compliant with a custom attribute, all types within that assembly are

5281 Bookfile Page 9 Monday, September 23, 2002 5:10 PM

10

Chapter 1

• Microsoft .NET Framework

automatically CLS compliant. However, one can also mark individual types
with custom attributes to make them non-CLS compliant. Similarly, if a
type is marked as CLS compliant, all the members of that type are auto-
matically CLS compliant unless marked as non-CLS compliant with the
help of attributes.

Most of the classes found in the .NET Framework class library are CLS
compliant. Thus, these classes can be used from all languages that are tar-
geted for the .NET Framework.

Understanding Compilation in .NET Framework

Compilation is a two-step process in the .NET Framework, as shown in
Figure 1-3. In the first step, the language compiler generates Microsoft
Intermediate Language (MSIL) Generally all compilers complying with the
CLR will generate MSIL. Therefore, the CLR is presented with MSIL, no
matter what language has been used to develop the code. MSIL is com-
monly referred as the language of the CLR.

In the second step of compilation, the just-in-time (JIT) compiler compiles
MSIL into native code, which can be executed on specific hardware and operat-
ing systems. The JIT compiler is a part of the runtime execution environment.

Figure 1-3 Compilation in Microsoft .NET.

Operating System: Windows 2000

Managed Code Managed Code Managed Code
Unmanaged

Code

Common Language Runtime JIT Compiler

Assembly

Compiler Compiler Compiler

VB.NET C# VC++.NET

Native Code

MSIL

CLR Services

5281 Bookfile Page 10 Monday, September 23, 2002 5:10 PM

Addit ional Concepts in .NET Framework

11

In Microsoft .NET there are three types of JIT compilers:

•

Pre-JIT.

 Pre-JIT compiles complete source code into native code in
a single compilation cycle. This is done at the time of deployment of
the application.

•

Econo-JIT.

 Econo-JIT compiles only those methods that are called
at runtime. However, these compiled methods are removed when
they are not required.

•

Normal-JIT.

 Normal-JIT compiles only those methods that are called at
runtime. These methods are compiled the first time they are called, and
then they are stored in cache. When the same methods are called
again, the compiled code from cache is used for execution.

The security policy settings are referred at the compilation stage. If the
code is not type-safe, the JIT process is aborted and an exception is raised.
This type safety is ensured during compilation using JIT.

Overall the role of a JIT compiler is to bring higher performance by
placing the compiled code in cache so that when the next call is made to the
same method or procedure, it gets executed at a faster speed.

Additional Concepts in .NET Framework

This section will cover the some of the namespaces found in the .NET Frame-
work class library. It will also give an introduction to the concept of assemblies
in the .NET Framework and explain the terms managed and unmanaged code.

Introduction to Namespaces

Microsoft .NET Framework includes a rich base class library that contains classes,
interfaces, and value types that accelerate the development process. This class
library provides access to system functionality. To ensure interoperability
between languages, the classes in the .NET Framework class library are CLS
compliant. Thus, they can be used from any programming language targeted for
the Microsoft .NET Framework that complies with the CLS specifications.

Microsoft .NET introduces a concept of namespaces that is similar to pack-
ages in Java. Namespaces are logical groupings of functionally related classes.
They also help avoid collisions when referring to classes with same name.

The .NET Framework class library contains classes, which perform the
following functions:

•

Representing base data types

•

Abstracting common exceptions

•

File I/O handling

•

XML handling

•

Database handling

•

Accessing information about loaded types through reflection

5281 Bookfile Page 11 Monday, September 23, 2002 5:10 PM

12

Chapter 1

• Microsoft .NET Framework

It also contains security related classes, Windows Forms and Web Forms, rich
Windows controls, and rich server-side controls for ASP and provides a rich
set of interfaces. There are many abstract and concrete classes provided in the
class library. User-defined classes can implement any number of the interfaces
provided by the .NET Framework class library.

Figure 1-4 shows the Framework class library provided by Microsoft
.NET Framework.

The

System

 namespace is the root namespace for built-in types provided
by the Microsoft .NET Framework. This namespace includes classes that repre-
sent the base data types. Any language supported in the .NET Framework can
use these base data types. The class

Object

is the root class in the inheritance
hierarchy of the System namespace. Int16, Int32, Byte, Boolean, Single,

Figure 1-4 Microsoft .NET Framework class library.

Configuration

Globalizations

Diagnostics

Collections

Net

Resources

Reflection

IO

ServiceProcess

Threading

Text

Security

Serialization

Remoting

InteropServices

Runtime

System

Design

OLEDb

SQLTypes

SQL

System.Data

XPath

XSLT

Serialization

System.XML

Text

Drawing2D

System.Drawing

Printing

Imaging

Security

Configuration

SessionState

Caching

Description

Protocols

Discovery

Services

WebControls

HTMLControls

UI

System.Web

Design

System.Windows.Forms

ComponentModel

5281 Bookfile Page 12 Monday, September 23, 2002 5:10 PM

Addit ional Concepts in .NET Framework 13

Double, Char, Array, and String are some examples of members in the Sys-
tem namespace. It is important to note that many of these types correspond to
the primitive data types, which are used in programming languages such as
Visual Basic, Visual C++, and others.

Functionalities offered by some of the commonly used and important
namespaces, which can be used by developer and would be helpful during
migration, are as follows:

• System.Runtime.InteropServices contains classes for interopera-
bility with COM and other unmanaged code. The classes perform all
the data marshalling and all other plumbing work required for inter-
operating with the unmanaged code. This namespace is important
during migration because only the main application needs to be
migrated to Visual Basic .NET. The COM components can be used
as they are through the interoperability mechanism offered by the
classes in this namespace.

• Microsoft.VisualBasic.Compatibility contains classes that are not
used in Visual Basic .NET but are preserved so that elements of
Visual Basic 6.0 can still be used in Visual Basic .NET during the
migration process.

• DirListBox, DriveListBox, and FileListBox are some of the com-
monly used controls in Visual Basic 6.0 forms that get upgraded to
Visual Basic .NET with the help of this namespace.

• System.Runtime.Remoting contains classes for creating and con-
figuring distributed applications.

• System.IO contains classes for basic data stream access and man-
agement, including file and memory I/O.

• System.Reflection contains functionality to access type metadata
and dynamic creation and invocation of types.

• System.Net contains classes for sending and receiving data over a
network for commonly used network protocols.

• System.Threading contains classes for multithreaded programming
support, including locking and synchronization.

• System.Security contains classes for accessing the .NET Frame-
work security system, including policy resolution, stack walks, and
permissions.

• System.Collections contains classes for collections of objects, such
as lists, queues, arrays, hash tables, and dictionaries.

• System.Drawing contains classes for rich two-dimensional graph-
ics functionality and access to GDI+ functionality. Classes provided
in this namespace replace graphics functionality offered by individ-
ual controls in Visual Basic. More advanced functionality is provided
in the System.Drawing.Drawing2D, System.Drawing.Imaging,
and System.Drawing.Text namespaces.

5281 Bookfile Page 13 Monday, September 23, 2002 5:10 PM

14 Chapter 1 • Microsoft .NET Framework

• System.Windows.Forms provides classes for rich user-interface
features for Windows-based applications. Classes in this namespace
replace the Visual Basic Form object and other control objects.

• System.Web contains classes for developing Web applications.
Classes in this namespace provide core infrastructure for ASP .NET,
including Web Forms support.

• System.Web.Services contains classes for developing SOAP-based
Web services and clients for consuming these Web services.

• System.Data offers a complete set of functionality for all database-
related operations. It contains nested namespaces. One namespace,
System.Data.SqlClient, provides database-related operations for
SQL Server. The other namespace, System.Data.OleDb, deals with
other kinds of databases. The System.Data.OleDb namespace pro-
vides classes for native data types within SQL Server. These classes
provide a safer, faster alternative to other data types.

• System.XML contains classes for creating and processing XML
documents.

Understanding Assemblies in the .NET Framework
An assembly is the unit of deployment in the .NET Framework. It contains
code that can be executed in the CLR. Figure 1-5 shows the contents of a typ-
ical assembly in the .NET Framework. As seen in the figure, an assembly con-

Figure 1-5 Assembly in Microsoft .NET.

Class:

Methods
Properties
Fields

Metadata

Manifest

Assembly

Class:

Methods
Properties
Fields

Module

MSIL

....

5281 Bookfile Page 14 Monday, September 23, 2002 5:10 PM

Addit ional Concepts in .NET Framework 15

tains manifest data and one or more modules. Manifest data contains
information about the assembly and other lists of assemblies that it depends
on. It also contains all the publicly exposed types and resources. An assembly
contains various modules. Each module contains metadata and Intermediate
Language (IL). In Microsoft .NET Module can either be an EXE file or a DLL.
Manifest in an assembly contains list of dependent assemblies and types and
resources exposed by assembly.

Assemblies can be static as well as dynamic. Static assemblies are stored
on the disk as portable executable (PE) files. Dynamic assemblies are created
at runtime and can be executed directly from the memory. They need not be
saved to the hard disk.

The scope of an assembly can be made specific to a particular applica-
tion by copying the assembly in the application’s directory structure. The
assembly can also be made global so that all other applications can make use
of this assembly. To make the assembly global, it has to be put into the global
assembly cache. This is achieved with the help of a global assembly cache
tool (gacutil.exe) provided by the .NET Framework.

Microsoft .NET Framework SDK provides a tool called MSIL Disassem-
bler (ILDasm.exe) to view the MSIL. The Intermediate Language Disassem-
bler (ILDasm.exe) allows the developer to load any Microsoft .NET assembly
(EXE or DLL) and investigate its contents (including the associated manifest,
IL instruction set and type metadata).

The folder AddClass for this chapter contains a small application using
Visual Basic .NET.

 Public Class AddClass

 Public Shared Sub Main()

 Console.WriteLine("Addition of {0} and {1} is _

 {2}",10, 20, Add(10, 20))

 End Sub

 Private Shared Function Add(ByVal iOperand1 As _

 Integer, ByVal iOperand2 As Integer) As Integer

 Return (iOperand1 + iOperand2)

 End Function

 End Class

In this source code a class named AddClass has been defined. There
are two elements in this class: public method Main and private function Add.
This code adds two integers: iOperand1 and iOperand2. The source code
file named AddClass.vb has been created and compiled in Visual Studio .NET
using the Visual Basic .NET compiler. On the command line AddClass.vb can
be compiled using vbc AddClass.vb command. This compilation process

5281 Bookfile Page 15 Monday, September 23, 2002 5:10 PM

16 Chapter 1 • Microsoft .NET Framework

generates an assembly. To view the contents of an assembly, the ILDasm.exe
utility is used as shown in Figure 1-6.

As seen in Figure 1-6, the structure of the assembly is presented in a
familiar tree view format. Methods, properties, and so on for a given type are
identified by a specific icon. The screen in Figure 1-6 shows that the assembly
AddClass.exe contains a default constructor and two static methods named
Main and Add. To check the MSIL for the method Add, double-click the Add
method. This opens up a separate window displaying the MSIL code as
shown in Figure 1-7.

It is important to note that the same MSIL code is generated irrespective
of the language that has been used to develop the application. Thus all
Microsoft .NET languages have the same capabilities, and the language used
for development depends on the preferences of the developer. In addition,
the manifest information for the assembly can be viewed by double-clicking
on the Manifest link in the main ILDasm utility. Figure 1-8 shows the infor-
mation for the AddClass.exe assembly that was created in the previous step.

As shown in Figure 1.8, the assembly AddClass.exe references the
assembly mscorlib.dll, which contains the base class library DLL. Although the
entire base class library is broken into several assemblies, the primary binary is
mscorlib.dll. This assembly contains a large number of core types, and it pro-
vides common programming tasks needed to build .NET applications.

Figure 1-6 ILDasm utility for AddClass.exe file.

5281 Bookfile Page 16 Monday, September 23, 2002 5:10 PM

Addit ional Concepts in .NET Framework 17

MSIL is a language in its own right. The tool developers guide provided
with the Microsoft .NET SDK provides information on the Common Language
Infrastructure (CLI). The documentation also provides comprehensive refer-
ence documentation for the IL instruction set.

The MSIL code can be stored in file with a .IL extension. This file can be
converted into a portable executable file by using a utility called ILASM.EXE.
This utility has been provided with Microsoft .NET SDK, and it generates a PE
file from MSIL assembly language.

Figure 1-7 MSIL code for Add method in AddClass.

Figure 1-8 Manifest Information for AddClass.

5281 Bookfile Page 17 Monday, September 23, 2002 5:10 PM

18 Chapter 1 • Microsoft .NET Framework

Introduction to Managed and Unmanaged Code
One of the most important concepts in the .NET Framework is managed code,
which is code that runs under the supervision of the CLR. The advantage of
managed code is that the CLR provides services to managed code such as
automatic memory management through a garbage collection mechanism,
easy versioning and deployment capabilities, and better security options.

Unmanaged code does not run under the supervision of the CLR. It has
to implement memory allocation and deallocation logic. Unmanaged code
can be generated in Microsoft .NET by compiling code with the /unsafe
option during the compilation process.

During execution of a .NET application, managed code can interact with
send and receive data from unmanaged code. This process of passing data
between managed and unmanaged code is known as data marshalling. For
Microsoft .NET applications that use classic COM components, the classes
provided in the System.Runtime.Interop namespace do the data marshal-
ling. The application developer does not have to write code explicitly for the
data marshalling in this case.

To call into unmanaged code from managed code, a runtime callable
wrapper (RCW) is created. This, however, adds some performance penalty.
Similarly, calling into managed code from unmanaged code requires a COM
callable wrapper (CCW) to be generated.

Consideration for Migration
Microsoft .NET Framework interoperability features encourage developers
and organizations to continue using existing COM applications, Win32 DLL’s,
and ASP applications. Further, the interoperability features also allow the use
of existing unmanaged code, which usually is in the form of COM compo-
nents and Win32 DLLs to be used by the .NET applications.

In many of the scenarios where application code is packed into COM com-
ponents, the existing code base is interoperable with the .NET applications. It
means that developers can enhance applications using .NET while making use
of the existing code base by utilizing the COM interoperability options provided
by .NET Framework. For new projects, they should consider developing the
entire project using .NET Framework. On the other hand, if an existing applica-
tion addresses the business needs of an organization and is stable, it’s better not
to consider those applications for migration. Developers often have a tough time
opting between a migration and interoperability and more importantly when to
choose interoperability options and when to go in for migration.

We have seen in earlier sections of this chapter that Microsoft .NET is
definitely a decent improvement over COM technology and is considered
more compact. It brings us nearer to true code reusability. However, many

5281 Bookfile Page 18 Monday, September 23, 2002 5:10 PM

Considerat ion for Migrat ion 19

organizations have probably invested huge amounts in building COM compo-
nents in the last decade. COM has been in the market for almost 8 years now.
Also, the last decade saw a substantial growth of the information technology
(IT) industry in various segments, which means that there has been a lot of
code packed in the form of components. So, it is impracticable to rewrite the
entire code into .NET components, however good the components may be
for designing more robust applications. Existing applications using COM com-
ponents have already been been tested, and a shift to .NET components
would mean that this testing would have to be performed against the newly
developed applications again. So, there is a great need for interoperability
between the COM and .NET components.

However, there are scenarios wherein we need to consider existing
applications to be moved to .NET. Let’s presume that a method call in our
applications only sets a value of a certain property or does reasonably a small
amount of work; then the overhead of interoperability would be bit heavy.
Usually, the overhead of calling from managed code to unmanaged code via
.NET COM interoperability options is insignificant. In cases where there is an
intensive usage of Get and Set methods it’s better considering rewriting of the
application using any of the .NET compliant languages rather than choosing
interoperability; otherwise there would heavy performance penalties.

With Visual Studio .NET the development, maintenance, and deploy-
ment of applications becomes much easier and faster. As such, the .NET
development environment is a notable improvement over the COM-based
development model for writing distributed applications. If most clients of
your existing components will be written in managed code, you should
consider either migrating your component to managed code or writing a
managed wrapper around it.

There are certain other things that you need to take into consideration
while migrating applications to .NET. Most of these things vary from case to case.
However, there are obvious things that can be discussed in general. One is
choosing an operating system. The choice of an operating system will affect the
migration strategy to be followed. Choosing an operating system like Win 2000,
Win XP, or Windows .NET can reap maximum benefits of the .NET Framework.
Although the .NET Framework works on Windows 98, Windows NT, and Win-
dows ME, these platforms don’t offer complete access .NET features. So the
choice of operating systems should go along with the migration plan.

The object-oriented features available in .NET also make it a favorite
choice of many designers to consider moving their existing applications to
.NET. The reliance of .NET on open standards such as CLI, XML, and SOAP
and rich enhancement to the ASP model also makes it a good candidate for
migrating existing applications to .NET. Knowing about code reusability and
COM interoperability for migration to .NET is of special importance because it
not only helps developers decide how to migrate, but it also helps designers
and architects deliver better extensible, integral, and interoperable systems.

5281 Bookfile Page 19 Monday, September 23, 2002 5:10 PM

20 Chapter 1 • Microsoft .NET Framework

Roadmap to Migration
Because this book deals with technical aspects of migration to Visual Basic
.NET, ASP.NET, and Visual C++ .NET, not all of the steps presented in this sec-
tion are discussed in detail in subsequent chapters; this section deals with the
generic process approach rather than the technical approach. To have proper
management of the migration project, the migration team should follow the
basic steps presented in this section.

Migration from one technology to another involves four major steps,
which ensure smooth migration to the new technology. This section takes a
look at the steps involved in any migration process. They are applicable to all
three migrations covered in this book: Visual Basic to Visual Basic .NET, ASP
to ASP.NET, and Visual C++ to Visual C++ .NET.

Subsequent sections contain brief descriptions of various phases of the
methodology in addition to the tasks and activities for each phase.

Phases Involved in Migration
The methodology presented here supports the full spectrum of activities that
constitute a migration project. It provides guidelines for various phases.

Depending upon the project type, some of the activities and tasks can
be executed simultaneously. Sequencing and timings of these tasks and activ-
ities should be defined during the planning stage of the migration project.

It is important to note that the migration methodology can be custom-
ized according to

• Existing system type
• Migration goals

TABLE 1–1 Phases of Migration

Phase Activities

Phase I:
Assessment

Study and analyze existing system
Establish design goals for the new system
Do a cost-benefit/risk analysis

Phase II: Reverse
Engineering

Recover software design artifacts
Define functional specification for the new system

Phase III: Forward
Engineering

Design the new system
Apply migration changes to the existing application
Construct the new system
Test the new system

Phase IV:
Installation

Develop necessary operation manuals and procedures
Install new hardware and software environment
Execute production trial run

5281 Bookfile Page 20 Monday, September 23, 2002 5:10 PM

Phases Involved in Migrat ion 21

• Required deliverables
• Staff experience
• Size of the project
• Complexity of the project

This methodology should not be viewed as a set of rigid procedures. Each
phase, task, and activity need not be executed for all the projects. The process
of customization requires selecting, deleting, adding, combining, and sequenc-
ing various phases, tasks, and activities. It is necessary to update migration
methodology as a result of ongoing project experience. We will look at each of
the features in the following sections.

Phase I—Assessment
Assessment is the first phase of a migration project. It involves developing an
understanding of the existing system. This can be carried out through various activ-
ities such as interviews, application demonstration, meeting with system experts,
and evaluation of proposed (new) system architecture. This will help in deciding
the migration path from an existing system to a new system based on the method-
ology provided in this document. It involves preparing a detailed migration plan.

Assessment activities can be classified into three categories:

1. Understanding the existing system and its development environ-
ment. This is achieved through

• Review of existing system documentation
• Interviews, meetings, and application demonstration with sys-

tem experts (such as business leaders, developers and maintain-
ers, users, etc.)

• Review of system history records (change log, error log, mainte-
nance records)

2. Analysis and decision making. Based on the analysis of the existing
system, business goals and objectives, customer needs, and migra-
tion recommendations, the following decisions are made:

• Migration goals and objectives
• Scope and extent of migration efforts
• Migration strategies and technical approach
• Development environment and architecture of new system
• Critical success factors for the migration effort

3. Planning. Once the decision to migrate the existing system is
affirmed, the following plans for the migration efforts are prepared:

• Reverse-engineering plan
• Forward-engineering (development) plan
• Test plan
• Configuration management plan

5281 Bookfile Page 21 Monday, September 23, 2002 5:10 PM

22 Chapter 1 • Microsoft .NET Framework

• Data conversion plan
• Installation and cutover plan
• Training plan

Phase II—Reverse Engineering
The purpose of reverse engineering is to recover and reconstruct software
design artifacts such as DFDs, business and validation rules, and key data
elements of the existing system. Types of the artifacts to be recovered and
the effort involved depend upon the goals and objectives of a migration
project and also upon the gap between existing system documentation
(such as functional specification, design document, etc.) and the running
system.

The following steps will form a major part of this phase:

1. Carry a program-level code walk-through and detailed analysis. The
following factors would be evaluated during this phase:

• Module-level functional description
• Functional hierarchy
• Program control flow diagrams
• Data flow diagrams at each level
• Business rules
• Cross-references
• Entity relationship diagram
• Handling of locks in each module
• Error and help message handling
• Identifying common libraries and functions
• Identifying components and Active X controls
• Data source details
• Mapping between application domain entities and data source
• Help files and lookups
• Informal comments and observations.

2. Based on information recovered from the program-level code walk-
through, regenerate functional specification document and other
higher level software artifacts of the current system.

3. Create the functional specification for the new system by

• Adding new requirements to recovered functional specification
• Remove obsolete functions

Phase III—Forward Engineering
The aim of the forward engineering phase is to design, develop, and test the
new system and migrate the existing system. The design artifacts of the exist-
ing system recovered in the reverse engineering phase and the functional
specification of the new system form the major inputs to this phase.

5281 Bookfile Page 22 Monday, September 23, 2002 5:10 PM

Phases Involved in Migrat ion 23

The selection of a software development life-cycle model (Waterfall,
RAD, Prototype, etc.), which depends upon the type of the application, will
affect the activities involved in this phase.

Activities given below are quite generalized and should be tuned
accordingly:

1. Design the new system; it will include following activities:

• Prototype design
• GUI design
• Database design
• Module-level design
• Program design
• Unit test cases design
• Integration test cases design
• System test cases design

2. Migrate the existing application code to newer programming lan-
guage. For Visual Basic this will involve migrating Visual Basic 6.0
code to Visual Basic .NET and will include following activities:

• Pre-migration changes in original source code as recommended
in this book

• A run through of the upgrade wizard (for Visual Basic code)
• Post-migration changes as presented in this book

For Visual C++ and ASP applications there is no concept of an
upgrade wizard and hence there is no clear demarcation such as
pre- and post-migration.

3. Construct the new system. It will include following activities:

• Coding
• Other QA activities such as code walk-through

4. Test the new system, including

• Unit and module testing
• Integration testing
• System and acceptance testing

Phase IV—Installation and Release
The installation and release phase identifies all the installation-related activi-
ties and procedures, and sequences and schedules these activities in an instal-
lation plan. The installation plan should be prepared much earlier in a
migration project and installation progress should be reviewed periodically.

Release involves putting the new system into operation. Before moving
into operation, it is important to have a trial run and evaluate the results. If
required, the trial run should be repeated until the desired results are
achieved. The new system should become operational only after it is accept-
able to all the users.

5281 Bookfile Page 23 Monday, September 23, 2002 5:10 PM

24 Chapter 1 • Microsoft .NET Framework

This phase will involve following steps:

1. Procure and install the new operating hardware and software
2. Review results of UAT trial run and initiate corrective action
3. Release new applications

Summary
The Microsoft .NET development platform is a new programming environ-
ment. This chapter gives a brief introduction to the Microsoft .NET Frame-
work. The .NET Framework can be used to develop console applications, rich
Windows GUI applications, Web applications, Web services, and Windows
services applications.

Major limitations of previous Microsoft technologies, such as COM regis-
tration, lack of language interoperability, and so on, have been eliminated in
Microsoft .NET Framework. Cross-language interoperability has been achieved
with the help of the CLR, CTS, and CLS.

The CLR is an execution environment for applications written in .NET
Framework. It offers various runtime services such as automatic garbage collec-
tion, code security, and scalability. Now Microsoft .NET Framework contains a
rich base class library. The classes in this library are accessible by all languages
targeted for the CLR. The .NET Framework class library contains classes that
offer commonly used functionalities such as Windows and Web Forms, data-
base handling, XML-related operations, file I/O operations, network-related
operations, and security related operations.

The code targeted for Microsoft .NET platform produces MSIL, which is
just-in-time compiled to generate native code. MSIL is known as the language
of the CLR; it is a language in its own right. A developer can develop applica-
tions using MSIL. Language vendors can make their language .NET compliant
by providing a compiler that converts the source code into MSIL.

Various considerations for migration have been discussed in this chapter.
However, the decision to migrate or use the interoperability mechanism varies
on case-to-case basis depending on architecture of the application.

The methodology presented in this chapter can be applied to any migra-
tion. Migration from Visual Basic to Visual Basic .NET, ASP to ASP.NET, and
Visual C++ to Visual C++ .NET will have four stages: assessment, reverse engi-
neering, forward engineering, and installation. However, individual steps
involved in each of these stages will differ for these three technologies.

5281 Bookfile Page 24 Monday, September 23, 2002 5:10 PM

