

F O U R

99

4

Asymmetric
Cryptography

M

odern computing has generated a tremendous need for convenient, man-
ageable encryption technologies. Symmetric algorithms, such as Triple DES
and Rijndael, provide efficient and powerful cryptographic solutions, espe-
cially for encrypting bulk data. However, under certain circumstances, sym-
metric algorithms can come up short in two important respects: key exchange
and trust. In this chapter we consider these two shortcomings and learn how
asymmetric algorithms solve them. We then look at how asymmetric algo-
rithms work at a conceptual level in the general case, with emphasis on the
concept of trapdoor one-way functions. This is followed by a more detailed
analysis of RSA, which is currently the most popular asymmetric algorithm.
Finally, we see how to use RSA in a typical program using the appropriate
.NET Security Framework classes.

We focus on the basic idea of asymmetric algorithms, and we look at
RSA in particular from the encryption/decryption point of view. In Chapter 5
we explore using the RSA and DSA asymmetric algorithms as they relate to
authentication and integrity checking, involving a technology known as digital
signatures. For a more thorough discussion of RSA from a mathematical point
of view, please see Appendix B.

Problems with Symmetric Algorithms

One big issue with using symmetric algorithms is the key exchange problem,
which can present a classic catch-22. The other main issue is the problem of
trust between two parties that share a secret symmetric key. Problems of trust

Thorsteinson.book Page 99 Tuesday, July 29, 2003 1:53 PM

100

C h a p t e r 4

�

Asymmetric Cryptography

may be encountered when encryption is used for authentication and integrity
checking. As we saw in Chapter 3, a symmetric key can be used to verify the
identity of the other communicating party, but as we will now see, this requires
that one party trust the other.

The Key Exchange Problem

The key exchange problem arises from the fact that communicating parties
must somehow share a secret key before any secure communication can be
initiated, and both parties must then ensure that the key remains secret. Of
course, direct key exchange is not always feasible due to risk, inconvenience,
and cost factors. The catch-22 analogy refers to the question of how to
securely communicate a shared key before any secure communication can be
initiated.

In some situations, direct key exchange is possible; however, much com-
mercial data exchange now takes place between parties that have never previ-
ously communicated with one another, and there is no opportunity to
exchange keys in advance. These parties generally do not know one another
sufficiently to establish the required trust (a problem described in the next sec-
tion) to use symmetric algorithms for authentication purposes either. With the
explosive growth of the Internet, it is now very often a requirement that parties
who have never previously communicated be able to spontaneously commu-
nicate with each other in a secure and authenticated manner. Fortunately, this
issue can be dealt with effectively by using asymmetric algorithms.

1

The Trust Problem

Ensuring the integrity of received data and verifying the identity of the source
of that data can be very important. For example, if the data happens to be a
contract or a financial transaction, much may be at stake. To varying degrees,
these issues can even be legally important for ordinary email correspondence,
since criminal investigations often center around who knew what and when
they knew it. A symmetric key can be used to check the identity of the indi-
vidual who originated a particular set of data, but this authentication scheme
can encounter some thorny problems involving trust.

1. Asymmetric algorithms are also known as public key algorithms, which can be mis-
leading, since there are actually two keys involved; one is public, and the other is pri-
vate. The term

public key algorithm

 is intended to contrast with the idea of
symmetric algorithms, where there is no public key but rather only a single secret key.

Thorsteinson.book Page 100 Tuesday, July 29, 2003 1:53 PM

P r o b l e m s w i t h S y m m e t r i c A l g o r i t h m s

101

As you may recall from Chapter 3, in this technique the data is hashed,
and the resulting hash is encrypted using a shared secret key with a symmet-
ric algorithm. The recipient, who also knows the secret key, is sent the data
along with the encrypted hash value. The recipient then decrypts the hash
using the shared key, and the result is verified against a fresh recalculation of
the hash value on the data received. This works because only someone who
knows the secret key is capable of correctly encrypting the hash of the origi-
nal data such that it will match the recalculated hash value computed by the
recipient. This verifies the identity of the data source. As an added bonus, this
technique verifies data integrity in that any individual who is ignorant of the
secret key could not have tampered with the data.

This is great if you have the luxury of establishing the shared secret
beforehand, but there is an additional problem here. What if you cannot trust
the other party with whom you have shared the secret key? The problem is
that this scheme cannot discriminate between the two individuals who know
the shared key. For example, your pen pal may fraudulently send messages
using your shared key, pretending to be you. This would allow your friend to
write IOUs to himself in your name, making this scheme useless in any trust-
lacking relationship. Other problems could arise if your partner shared the
secret key with others without telling you about it. Suddenly, you would have
no leg to stand on if certain disputes were to arise. For example, your partner
could renege on a contract by claiming that someone else must have obtained
the key from you and signed off on a deal in his name. This problem is
known as repudiation,

2

 and we often need a way to enforce nonrepudiation
between untrusting parties. The basic problem with all this is that any sym-
metric algorithm scheme requires that one party can safely trust the other
party, which often is not realistic.

Fortunately, asymmetric algorithms can be used to solve these problems
by performing the same basic operations but encrypting the hash using a pri-
vate key (belonging to an asymmetric key pair) that one individual and only
one individual knows. Then anyone can use the associated public key to ver-
ify the hash. This effectively eliminates the problems of trust and repudiation.

3

2. The word

repudiation

 means refusal to acknowledge a contract or debt. You will fre-
quently encounter its antonym, nonrepudiation, in discussions on digital signatures.

3. Actually, asymmetric algorithms cannot solve all these problems entirely on their
own. For a complete solution, we generally need to resort to enlisting the help of a
trusted third party, known as a certificate authority, who takes on the formal respon-
sibility of verifying and vouching for the identities of its clients. For the full story on
how asymmetric algorithms and certificate authorities together solve these prob-
lems, please see Chapter 5.

Thorsteinson.book Page 101 Tuesday, July 29, 2003 1:53 PM

102

C h a p t e r 4

�

Asymmetric Cryptography

This technique is called a digital signature, which is the main topic of the next
chapter.

The Idea Behind Asymmetric Cryptography

In the 1970s Martin Hellman, Whitfield Diffie, and, independently, Ralph Merkle
invented a beautiful cryptographic idea. Their idea was to solve the key
exchange and trust problems of symmetric cryptography by replacing the sin-
gle shared secret key with a pair of mathematically related keys, one of which
can be made publicly available and another that must be kept secret by the
individual who generated the key pair. The advantages are obvious. First, no
key agreement is required in advance, since the only key that needs to be
shared with the other party is a public key that can be safely shared with
everyone. Second, whereas the security of a symmetric algorithm depends
on two parties successfully keeping a key secret, an asymmetric algorithm
requires only the party that generated it to keep it secret. This is clearly much
less problematic. Third, the issue of trusting the other party disappears in many
scenarios, since without knowledge of your secret key, that party cannot do
certain evil deeds, such as digitally sign a document with your private key or
divulge your secret key to others.

Asymmetric cryptography does not replace symmetric cryptography.
Rather, it is important to recognize the relative strengths and weaknesses of
both techniques so that they can be used appropriately and in a complemen-
tary manner. Symmetric algorithms tend to be much faster than asymmetric
algorithms, especially for bulk data encryption. They also provide much
greater security than asymmetric algorithms for a given key size. On the
down side, symmetric key cryptography requires that the secret key be
securely exchanged and then remain secret at both ends. In a large network
using symmetric encryption many key pairs will proliferate, all of which must
be securely managed. Because the secret key is exchanged and stored in
more than one place, the symmetric key must be changed frequently, per-
haps even on a per-session basis. Finally, although symmetric keys can be
used for message authentication in the form of a keyed secure hash, the full
functionality of a digital signature requires asymmetric encryption tech-
niques, such as RSA or DSA. As we shall see in the next chapter, a symmetric
keyed secure hash algorithm can be used to implement a MAC (Message
Authentication Code), which provides authentication and integrity but not
nonrepudiation. In contrast, asymmetric digital signature algorithms provide
authentication, integrity, and nonrepudiation, and enable the services of cer-
tificate authorities (CAs).

Thorsteinson.book Page 102 Tuesday, July 29, 2003 1:53 PM

T h e I d e a B e h i n d A s y m m e t r i c C r y p t o g r a p h y

103

Using Asymmetric Cryptography

To use asymmetric cryptography, Bob randomly generates a public/private key
pair.

4

 He allows everyone access to the public key, including Alice. Then, when
Alice has some secret information that she would like to send to Bob, she
encrypts the data using an appropriate asymmetric algorithm and the public key
generated by Bob. She then sends the resulting ciphertext to Bob. Anyone who
does not know the matching secret key will have an enormously difficult time
retrieving the plaintext from this ciphertext, but since Bob has the matching
secret key (i.e., the trapdoor information), Bob can very easily discover the
original plaintext. Figure 4–1 shows how asymmetric cryptography is used.

4. In real life this key pair is generated automatically by a cryptographic application,
and the user is typically oblivious to this fact. For example, Microsoft Outlook gener-
ates such a key pair, using the underlying Windows CSP (cryptographic service pro-
vider), for encrypting and digitally signing secure email messages. PGP (Pretty Good
Privacy), which is a freeware tool for secure messaging and data storage, works in a
similar manner, but it generates its own keys and works on multiple platforms.

Plaintext Encryption
Algorithm

Secret Private Key

Public Key

Plaintext Decryption
Algorithm

Ciphertext

FIGURE 4–1 How asymmetric cryptography is used.

Thorsteinson.book Page 103 Tuesday, July 29, 2003 1:53 PM

104

C h a p t e r 4

�

Asymmetric Cryptography

The Combination Lock Analogy

A traditional symmetric cipher is analogous to a lockbox with a combination
lock that has one combination used both to open it and close it.

5

 The analogy
for an asymmetric cipher is a somewhat stranger device: The single lock has
two distinct combinations, one for opening it and another for closing it. By
keeping one of these combinations secret and making the other combination
public, you can effectively control who can place or remove the contents in
the lockbox. This added flexibility supports two useful scenarios: confidential-
ity without prior key exchange and data integrity enforcement.

CONFIDENTIALITY WITHOUT PRIOR KEY EXCHANGE

Here is the first scenario. If you know the public combination for closing the
lock but not the private combination for opening the lock, then once you
have placed something into the box and locked it, it becomes impossible for
anybody who does not know the private opening combination

6

 to obtain the
contents. This demonstrates spontaneous confidentiality (i.e., keeping a secret
without prior key exchange). Hence, we have a solution to the key exchange
problem described earlier.

ENFORCING DATA INTEGRITY

The other scenario is if only you know the private combination for closing
the lock, and you place contents into the lockbox and then lock it. Then any-
one can open the lock, but nobody else can lock other contents into the
lockbox, since nobody else knows the private combination for closing the
lock. Therefore, nobody else can tamper with its contents and then close the
lock again. You might think that this is easy to defeat, since anyone could
easily create his or her own key pair and then lock any data into the lock-
box. However, only the newly created public key would then work, and the
original public key would fail to unlock the lockbox. Therefore, anyone with
knowledge of the original public key would not be fooled by such an attack.
Since tampering is detectable, this scenario demonstrates how data integrity
can be enforced.

5. You have to use your imagination just a bit here. Most physical combination locks
automatically lock simply by closing them. In this analogy the lock is a bit special in
that it requires knowledge of the combination to lock it closed.

6. Even you cannot open it once you have locked it if you do not know the private
unlocking combination. Since you placed the contents into the box in the first place,
you implicitly know its contents, so this is not often an issue, but this subtle point
can occasionally be significant.

Thorsteinson.book Page 104 Tuesday, July 29, 2003 1:53 PM

T h e I d e a B e h i n d A s y m m e t r i c C r y p t o g r a p h y

105

Trapdoor One-Way Functions

There are several asymmetric algorithms that make use of this great idea, but
all these algorithms have certain mathematical characteristics in common. In
each case an asymmetric algorithm is based on a type of function first sug-
gested by Diffie and Hellman that has special properties known as

trapdoor
one-way functions

. A trapdoor one-way function, if given some additional
secret information, allows much easier computation of its inverse function.

Before discussing what a trapdoor one-way function is, let’s look at the
broader class of one-way functions.

7

 A one-way function is a mathematical
function that is highly asymmetric in terms of its computational complexity
with respect to its inverse function. Such a function is easy to compute in the
forward direction but diabolically difficult to compute in the inverse direction.
Such functions are based on

hard

 mathematical problems, such as factoring
large composites into prime factors, the discrete log problem, and the knap-
sack problem. The inherent difficulty of such problems falls under the branch
of mathematics known as complexity theory, which is beyond the scope of
this book. Suffice it to say that the difficulty of these problems grows rapidly
in relation to the magnitude of the numbers (which correspond to the key
size used in the corresponding cryptographic algorithm) involved.

While finding a solution to the mathematical problem on which a one-
way function is based, it is very easy to test if a proposed solution is correct.
Imagine yourself working on a large jigsaw puzzle, and you want to find the
piece that belongs in a particular position. It might take you a long time to find
the correct piece, but at any time that you believe you have good candidate, it
takes very little effort to test it out. For a mathematical example, consider the
problem of finding all of the prime

8

 factors of a large composite number. This
is believed to be very difficult,

9

 but if you are given the prime factors, testing

7. One-way functions are widely believed to exist, and several presumed one-way func-
tions are used heavily in cryptography. Unfortunately, we currently have no formal
proofs that they actually do exist!

8. A prime number is a positive integer greater than one that is evenly divisible only by
one and itself, such as 2, 3, 5, 7, 11, and so on. A composite number is a positive inte-
ger greater than one that is not prime and thus has devisors other than one and itself,
such as 4, 6, 8, 9, 10, and so on.

9. Note that this problem is

believed

 to be difficult. That is, nobody has yet publicly dem-
onstrated a fast technique for solving this problem, and much evidence indicates that it
is very hard. Currently, this is an educated guess, not a proof. But without any hard
proof, how confident can we really be? Mathematics is full of examples of clever folks
finding devious ways of easily solving problems that appeared to be difficult. According
to a story about J. C. F. Gauss, when he was only seven years old, his teacher asked his
class to add the integers from 1 to 100. The other children took a very long time, and
most did not produce the correct answer. Gauss had the solution 5050 in the blink of
an eye, since he realized that it was the sum of 50 pairs, where each pair is equal to
101, or 50*101, which he could do in his head faster than he could write it down.

Thorsteinson.book Page 105 Tuesday, July 29, 2003 1:53 PM

106

C h a p t e r 4

�

Asymmetric Cryptography

them is a simple matter of multiplying them together and comparing the result
with the original large composite number. To convince yourself of this, imag-
ine trying to find all the prime factors of the composite number 3431 with only
pencil and paper to work with. Without the aid of a computer, most people
would take several hours to do this. However, if you were asked to test the
candidate solution of 47 and 73, you would probably take only a few seconds
to show that indeed they do multiply to produce the resulting value of 3431.
Now consider that the number 3431 can be represented with a mere 12 bits.
What if you tried this experiment with a 1024-bit number? Finding the prime
factors is a problem that grows exponentially with bit size (think in terms of
billions or trillions of years on a supercomputer), whereas testing a solution
grows at a very moderate rate with bit size (microseconds or milliseconds on a
personal computer).

The term one-way function is slightly misleading, since by definition, a
cipher can only be based on a mathematical function that is invertible, mean-
ing that its inverse function does indeed exist. After all, if a cipher were based
on a function that had no inverse, you could encrypt data, but then you could
not reliably decrypt that data. However, in practice, the inverse of a one-way
function is so difficult to compute that the mere fact that the inverse function
exists is of no help whatsoever in computing its value. Such a function is the-
oretically two-way, but, in practical terms, it is effectively one-way.

Now let’s add in the idea of a trapdoor. A trapdoor turns something that
is normally very difficult into something that is very easy, provided that you
know a powerful little secret. This is analogous to a haunted house where the
bookshelf revolves, opening a hidden passageway, but you first need to
know that it exists and that the secret to opening it is to pull on the candela-
bra three times. A one-way function that has the additional property that its
inverse function suddenly becomes very easy to compute provided an addi-
tional piece of secret information is known (i.e., a private key) becomes a
trapdoor one-way function. You can think of a trapdoor one-way function as
a haunted mathematical function if you like.

There are many one-way functions to choose from in mathematics, but
finding one that allows you to incorporate the all-important backdoor is not
so easy. A few candidates have been discovered that are convenient and
appear to be secure. Finding those algorithms that are also efficient enough to
be practical and use keys of a reasonable size reduces the candidates further.
Examples of successful trapdoor one-way functions are the discrete log prob-
lem, which forms the basis of the DSA algorithm, and the factoring of large
composites into prime factors, which forms the basis of the RSA algorithm.

Advantages of the Asymmetric Approach

With the asymmetric (also known as public key) approach, only the private
key must be kept secret, and that secret needs to be kept only by one party.

Thorsteinson.book Page 106 Tuesday, July 29, 2003 1:53 PM

T h e I d e a B e h i n d A s y m m e t r i c C r y p t o g r a p h y

107

This is a big improvement in many situations, especially if the parties have no
previous contact with one another. However, for this to work, the authenticity
of the corresponding public key must typically be guaranteed somehow by a
trusted third party, such as a CA. Because the private key needs to be kept
only by one party, it never needs to be transmitted over any potentially com-
promised networks. Therefore, in many cases an asymmetric key pair may
remain unchanged over many sessions or perhaps even over several years.
Another benefit of public key schemes is that they generally can be used to
implement digital signature schemes that include nonrepudiation. Finally,
because one key pair is associated with one party, even on a large network,
the total number of required keys is much smaller than in the symmetric case.

Combining Asymmetric and Symmetric Algorithms

Since there is no secret key exchange required in order to use asymmetric
algorithms, you might be tempted to solve the symmetric key exchange prob-
lem by simply replacing the symmetric algorithm with an asymmetric algo-
rithm. However, that would be like throwing the baby out with the bath water.
We still want to take advantage of the superior speed and security offered by
symmetric algorithms, so, instead, we actually combine the two (and some-
times more than two) algorithms.

For example, Microsoft Outlook and Netscape Communicator imple-
ment secure email using the S/MIME (Secure/Multipurpose Internet Mail
Extensions) specification. S/MIME is an IETF standard that supports both digi-
tal signatures for authentication and encryption for privacy. S/MIME provides
bulk message data encryption using any of several symmetric algorithms,
including DES, 3DES, and RC2. Secure symmetric key exchange and digital
signatures are provided by the RSA asymmetric algorithm as well as either of
the MD5 or SHA-1 hash algorithms.

As another example, the popular PGP software (developed by Philip
Zimmermann) provides cryptographic services for email and file storage by
combining several algorithms to implement useful cryptographic protocols.

10

In this way, message encryption and digital signatures are provided to email
clients using an assortment of selected symmetric, asymmetric, and hash algo-
rithms. RSA or ElGamal are used for PGP session key transport. 3DES is one
of several alternatives used for bulk PGP message encryption. PGP digital sig-
natures use either RSA or DSA for signing and MD5 or SHA-1 for generating
message digests.

There are several other protocols that are built in a hybrid manner by
combining asymmetric and symmetric algorithms, including IPSec (IP Security

10. For details, see the OpenPGP Message Format RFC 2440 at

http://www.ietf.org/rfc/
rfc2440.txt

.

Thorsteinson.book Page 107 Tuesday, July 29, 2003 1:53 PM

108

C h a p t e r 4

�

Asymmetric Cryptography

Protocol) and SSL (Secure Sockets Layer). IPSec is an IETF standard that pro-
vides authentication, integrity, and privacy services at the datagram layer,
allowing the construction of virtual private networks (VPNs). The SSL proto-
col, developed by Netscape, provides authentication and privacy over the
Internet, especially for HTTP (Hypertext Transfer Protocol).

Existing Asymmetric Algorithms

Recall that the only information that needs to be shared before initiating sym-
metric encryption is the secret key. Since this key is typically very small (typi-
cally no greater than 256 bits) compared to the bulk data (which could be
megabytes) that must be encrypted, it makes sense to use the asymmetric
algorithm to encrypt only the secret symmetric key, and then use this symmet-
ric key for encrypting the arbitrarily large bulk message data. The secret sym-
metric key is often referred to as a

session key

 in this scenario.
There are several asymmetric algorithms in existence today, including

RSA, DSA, ElGamal, and ECC. Currently, the most popular is RSA, which
stands for Rivest, Shamir, and Adelman, the names of its inventors. RSA is
based on the problem of factoring large composite numbers into prime fac-
tors. RSA can be used for confidentiality or symmetric key exchange as well
as for digital signatures. DSA, which was proposed by NIST in 1991, stands for
Digital Signature Algorithm. DSA is somewhat less flexible, since it can be
used for digital signatures but not for confidentiality or symmetric key
exchange. The ElGamal algorithm, which was invented by Taher ElGamal, is
based on the problem of calculating the discrete logarithm in a finite field.
EEC stands for Elliptic Curve Cryptography, which was independently pro-
posed in 1985 by Neal Koblitz and V. S. Miller. EEC is not actually an algo-
rithm, but an alternate algebraic system for implementing algorithms, such as
DSA, using peculiar mathematical objects known as elliptic curves over finite
fields. ElGamal and ECC are not currently supported by .NET out of the box;
however, the .NET Framework has been designed to be extensible, making it
possible for you or other vendors to provide implementations.

Some asymmetric algorithms, such as RSA and ElGamal, can be used for
both encryption and digital signatures. Other asymmetric algorithms, such as
DSA, are useful only for implementing digital signatures. It is also generally
true that asymmetric algorithms tend to be much slower and less secure than
symmetric algorithms for a comparable key size. To be effective, asymmetric
algorithms should be used with a larger key size, and, to achieve acceptable
performance, they are most applicable to small data sizes. Therefore, asym-
metric algorithms are usually used to encrypt hash values and symmetric ses-
sion keys, both of which tend to be rather small in size compared to typical
plaintext data.

Thorsteinson.book Page 108 Tuesday, July 29, 2003 1:53 PM

R S A : T h e M o s t U s e d A s y m m e t r i c A l g o r i t h m

109

RSA: The Most Used Asymmetric Algorithm

The most common asymmetric cipher currently in use is RSA, which is fully
supported by the .NET Security Framework. Ron Rivest, Adi Shamir, and
Leonard Adleman invented the RSA cipher in 1978 in response to the ideas
proposed by Hellman, Diffie, and Merkel. Later in this chapter, we shall see
how to use the high-level implementation of RSA provided by the .NET Secu-
rity Framework. But first, let’s look at how RSA works at a conceptual level.

Underpinnings of RSA

Understanding the underpinnings of RSA will help you to develop a deeper
appreciation of how it works. In this discussion we focus on the concepts of
RSA, and in Appendix B we look at two examples of implementing RSA from
scratch. One of these examples is

TinyRSA

, which is a toy version that limits
its arithmetic to 32-bit integers, and the other is a more realistic, multiprecision
implementation named

BigRSA

. You will probably never implement your own
RSA algorithm from scratch, since most cryptographic libraries, including the
.NET Security Framework, provide excellent implementations (i.e., probably
better than I could do). However, the RSA examples in Appendix B should
help you to fully understand what goes on in RSA at a deeper level.

Here is how RSA works. First, we randomly generate a public and pri-
vate key pair. As is always the case in cryptography, it is very important to
generate keys in the most random and therefore, unpredictable manner possi-
ble. Then, we encrypt the data with the public key, using the RSA algorithm.
Finally, we decrypt the encrypted data with the private key and verify that it
worked by comparing the result with the original data. Note that we are
encrypting with the public key and decrypting with the private key. This
achieves confidentiality. In the next chapter, we look at the flip side of this
approach, encrypting with the private key and decrypting with the public key,
to achieve authentication and integrity checking.

Here are the steps for generating the public and private key pair.

1.

Randomly select two prime numbers

p

 and

q

. For the algebra to work
properly, these two primes must not be equal. To make the cipher
strong, these prime numbers should be large, and they should be in the
form of arbitrary precision integers with a size of at least 1024 bits.

11

2.

Calculate the product:

n

 =

p

⋅

q

.

11. In practice, there are other concerns when choosing prime

p

 and

q

. For example,
even if they are large, it turns out to be easy to factor the product if the difference
between

p

 and

q

 is small, using a technique known as Fermat’s factorization
algorithm.

Thorsteinson.book Page 109 Tuesday, July 29, 2003 1:53 PM

110

C h a p t e r 4

�

Asymmetric Cryptography

3.

Calculate the Euler totient

12

 for these two primes, which is represented
by the Greek letter

φ

. This is easily computed with the formula

φ

=
(

p

 – 1)

⋅

 (

q

 – 1).

4.

Now that we have the values

n

 and

φ

, the values

p

 and

q

 will no longer
be useful to us. However, we must ensure that nobody else will ever be
able to discover these values. Destroy them, leaving no trace behind so
that they cannot be used against us in the future. Otherwise, it will be
very easy for an attacker to reconstruct our key pair and decipher our
ciphertext.

5.

Randomly select a number

e

 (the letter

e

 is used because we will use this
value during encryption) that is greater than 1, less than

φ

, and relatively
prime to

φ

. Two numbers are said to be relatively prime if they have no
prime factors in common. Note that

e

 does not necessarily have to be
prime. The value of

e

 is used along with the value

n

 to represent the
public key used for encryption.

6.

Calculate the unique value

d

 (to be used during decryption) that satisfies
the requirement that, if

d

⋅

 e is divided by φ, then the remainder of the
division is 1. The mathematical notation for this is d ⋅ e = 1(mod φ). In
mathematical jargon, we say that d is the multiplicative inverse of e mod-
ulo φ. The value of d is to be kept secret. If you know the value of φ, the
value of d can be easily obtained from e using a technique known as the
Euclidean algorithm. If you know n (which is public), but not p or q
(which have been destroyed), then the value of φ is very hard to deter-
mine. The secret value of d together with the value n represents the pri-
vate key.

Once we have generated a public/private key pair, we can encrypt a
message with the public key with the following steps.

1. Take a positive integer m to represent a piece of plaintext message. In
order for the algebra to work properly, the value of m must be less than
the modulus n, which was originally computed as p ⋅ q. Long messages
must therefore be broken into small enough pieces that each piece can
be uniquely represented by an integer of this bit size, and each piece is
then individually encrypted.

2. Calculate the ciphertext c using the public key containing e and n. This is
calculated using the equation c = me(mod n).

12. The Euler totient, symbolized with the Greek letter phi, represents the number of
positive integers less than or equal to n that are relatively prime to n (i.e., have no
prime factors in common with n). One is considered to be relatively prime with all
integers.

Thorsteinson.book Page 110 Tuesday, July 29, 2003 1:53 PM

R S A : T h e M o s t U s e d A s y m m e t r i c A l g o r i t h m 111

Finally, we can perform the decryption procedure with the private key
using the following steps.

1. Calculate the original plaintext message from the ciphertext using the pri-
vate key containing d and n. This is calculated using the equation m =
cd(mod n).

2. Compare this value of m with the original m, and you should see that
they are equal, since decryption is the inverse operation to encryption.

A Miniature RSA Example
Here is an example of RSA that is almost simple enough to do with pencil and
paper. It is similar in scale to the TinyRSA code example discussed in this
chapter. The bit size of the numbers used in this example is ridiculously small
(32-bit integers) and offers no real security whatsoever, but at a conceptual
level, this example provides a complete picture of what actually happens in
the RSA algorithm. The advantage of studying this tiny paper and pencil
example is that with these very small bit sizes, the underlying concepts are
much more tangible and easily visualized. After all, not too many people can
do 1024-bit arithmetic in their head! Even working with such tiny 32-bit num-
bers, the exponentiation step of the algorithm will easily overflow this 32-bit
capacity if you are not careful about how you implement it.13

Following the conceptual steps outlined above, we start off by choosing
two unequal prime numbers p and q.14 Since we intentionally choose very
small values, we prevent subsequent calculations from overflowing the 32-bit
integer arithmetic. This also allows us to follow along using the Calculator
program provided with Windows to verify the arithmetic.

1. Assume that the random values for the primes p and q have been
chosen as

p = 47

q = 73

2. Then the product n of these two primes is calculated:

n = p ⋅ q = 3431

13. To avoid overflow, you must not use the exponentiation operator directly, but
rather iterate multiplications in a loop, and in each iteration, you normalize the
result to remain within the bounds of the modulus.

14. Again, in real life, end users are oblivious to these steps. The cryptographic applica-
tion that they are using will automatically choose these two prime numbers and
carry out all the required steps listed here. However, as a programmer, you may on
rare occasion need to know how to implement a protocol such as this from scratch.

Thorsteinson.book Page 111 Tuesday, July 29, 2003 1:53 PM

112 C h a p t e r 4 � Asymmetric Cryptography

3. The Euler totient φ for these two primes is found easily using the follow-
ing formula:

φ = (p – 1) ⋅ (q – 1) = 3312

4. Now that we have n and φ, we should discard p and q, and destroy any
trace of their existence.

5. Next, we randomly select a number e that is greater than 1, less than n,
and relatively prime to phi. Of course, there is more than one choice pos-
sible here, and any candidate value you choose may be tested using the
Euclidian method.15 Assume that we choose the following value for e:

e = 425

6. Then the modular inverse of e is calculated to be the following:

d = 1769

7. We now keep d private and make e and n public.

Now that we have our private key information d and our public key
information e and n, we can proceed with encrypting and decrypting data. As
you would probably imagine, this data must be represented numerically to
allow the necessary calculations to be performed. In a real-life scenario, the
plaintext is typically a hash value or a symmetric key, but it could actually be
just about any type of data that you could imagine. Whatever form this data
takes, it will have to be somehow represented as a sequence of integer num-
bers, each with a size that will be limited by the key size that you are using.
We do not concern ourselves here with the details of encoding and chunking
of the data, but instead we focus on the conceptual aspects of RSA. For this
reason, this example simply considers a scenario in which the plaintext data is
one simple, small integer value.

1. Assume that we have plaintext data represented by the following simple
number:

plaintext = 707

2. The encrypted data is computed by c = me(mod n) as follows:

ciphertext = 707^425(mod 3431) = 2142

15. The Euclidian method is an efficient technique for finding the GCD (greatest com-
mon devisor) of any two integers.

Thorsteinson.book Page 112 Tuesday, July 29, 2003 1:53 PM

C a v e a t : P r o v a b i l i t y I s s u e s 113

3. The ciphertext value cannot be easily reverted back to the original plain-
text without knowing d (or, equivalently, knowing the values of p and
q). With larger bit sizes, this task grows exponentially in difficulty. If,
however, you are privy to the secret information that d = 1769, then the
plaintext is easily retrieved using m = cd(mod n) as follows:

plaintext = 2142^1769(mod 3431) = 707

If you compile the following code, you will verify that the results shown
above are correct. While you look at this code, keep in mind that a realistic
RSA implementation uses a much larger modulus than n = 3431, and a realis-
tic message typically contains too many bits to be represented by a tiny num-
ber such as m = 707.

int m = 707; //plaintext
int e = 425; //encryption exponent
int n = 3431; //modulus
int c = 1; //ciphertext

//encryption: c = m^e(mod n)
for (int i=0; i<e; i++) //use loop to avoid overflow
{
 c = c*m;
 c = c%n; //normalize within modulus
}
//ciphertext c is now 2142

int d = 1769; //decryption exponent
m = 1; //plaintext

//decryption m = c^d(mod n)
for (int i=0; i<d; i++) //use loop to avoid overflow
{
 m = m*c;
 m = m%n; //normalize within modulus
}
//plaintext m is now 707 matching original value

Caveat: Provability Issues

Every asymmetric algorithm is based on some trapdoor one-way function.
This leads to a critically important question: How do we know for certain
that a particular function is truly one-way? Just because nobody has publicly
demonstrated a technique that allows the inverse function to be calculated
quickly does not actually prove anything about the security of the algorithm.

Thorsteinson.book Page 113 Tuesday, July 29, 2003 1:53 PM

114 C h a p t e r 4 � Asymmetric Cryptography

If somebody has quietly discovered a fast technique to compute the inverse
function, he or she could be busily decrypting enormous amounts of cipher-
text every day, and the public may never become aware of it. It may seem
paranoid, but high on the list of suspicions are major governments, since
they employ large numbers of brilliant mathematicians who are outfitted with
the most powerful computing resources available, putting them in a better
position than most for cracking the trapdoor.

Most reassuring would be a rigorous mathematical proof of the inherent
difficulty of computing the inverse function without knowledge of the secret
key. With such a proof, further attempts at cracking the backdoor would be
futile. Currently, rigorous formal proofs on the security of asymmetric algo-
rithms are sorely lacking. Only in a few specialized (and not so useful) cases
have any proofs been demonstrated in the public literature.

In spite of this worrisome lack of evidence, most cryptography experts
currently believe that popular asymmetric algorithms, such as RSA, are quite
secure given that a sufficient key size is used. Note that this is really just a
consensus of learned opinion, which falls well short of a rigorous proof. Of
course, considering that most ciphers used throughout history were assumed
to be secure at the time that they were used, only to be broken using newly
discovered attacks, a certain degree of anxiety is warranted.

In the case of RSA, the entire scheme depends on the widely held opin-
ion that there are no techniques known that will allow an attacker to easily
calculate the values of d, p, or q given only the public key containing n and e.
Of course, this becomes more effective when you use larger values for p and
q. C#’s built-in integer types top out at 64 bits for the long data type, which is
nowhere near the size that we need for real asymmetric cryptography applica-
tions. Instead, we typically want to use integer data types that are represented
by 1024-bit or larger words. Another worry is that this technique depends on
a critical assumption that is widely believed to be true but has never been
mathematically proven. The assumption is that there are in fact no tricks or
fast techniques for factoring pq into its prime factors p and q. In fact, it has
never been proven that factoring pq into p and q is the only way to attack
RSA. If someone was either smart enough or lucky enough to dismantle these
assumptions, that person could become the richest person in the world but
would likely be a candidate for assassination.

Programming with .NET Asymmetric Cryptography

In this section, we look at the RSAAlgorithm and SavingKeysAsXml exam-
ple programs provided for this chapter. These two code examples show how
to encrypt and decrypt using the RSA algorithm as well as how to store and
retrieve key information using an XML format. The RSA code example uses

Thorsteinson.book Page 114 Tuesday, July 29, 2003 1:53 PM

P r o g r a m m i n g w i t h . N E T A s y m m e t r i c C r y p t o g r a p h y 115

the concrete RSACryptoServiceProvider class. Figure 4–2 shows where this
class resides in the class hierarchy, under the abstract AsymmetricAlgo-
rithm class. The other concrete class, DSACryptoServiceProvider, is dis-
cussed in Chapter 5, where we look at digital signatures.

An RSA Algorithm Example
The RSAAlgorithm example uses the Encrypt method of the RSACryp-
toServiceProvider class. This method takes two parameters, the first of
which is a byte array containing the data to be encrypted. The second param-
eter is a boolean that indicates the padding mode to be used. Padding is
required, since the data to be encrypted is usually not the exact number of
required bits in length. Since the algorithm requires specific bit-sized blocks
to process properly, padding is used to fill the input data to the desired
length. If this second parameter is true, then the improved OAEP16 padding is
used. Otherwise, the traditional PKCS#1 v1.5 padding is used. PKCS#1 v1.5
has been traditionally the most commonly used padding scheme for RSA
usage. However, it is recommended that all new RSA applications that will be
deployed on platforms that support OAEP should use OAEP. Note that OAEP
padding is available on Microsoft Windows XP and Windows 2000 with the

16. OAEP (Optimal Asymmetric Encryption Padding) is a padding technique developed
by Mihir Bellare and Phil Rogaway in 1993 for use with RSA. OAEP provides signifi-
cantly improved security characteristics over the popular PKCS#1 v1.5 padding
scheme.

Namespace: System.Security.Cryptography

AsymmetricAlgorithm

RSA

RSACryptoServiceProvider

DSA

DSACryptoServiceProvider

FIGURE 4–2 The asymmetric algorithm class hierarchy.

Thorsteinson.book Page 115 Tuesday, July 29, 2003 1:53 PM

116 C h a p t e r 4 � Asymmetric Cryptography

high-encryption pack installed. Unfortunately, previous versions of Windows
do not support OAEP, which will cause the Encrypt method, with the second
parameter set to true, to throw a CryptographicException. The Encrypt
method returns the resulting encrypted data as a byte array. Here is the syntax
for the Encrypt method.

public byte[] Encrypt(
 byte[] rgb,
 bool fOAEP
);

The complementary method to Encrypt is of course Decrypt. You can
probably guess how it works. The second parameter is a byte array contain-
ing the ciphertext to be decrypted. The second parameter is the same as that
in the Encrypt method, indicating the padding mode, as described previ-
ously. The return value is a byte array that will contain the resulting recovered
plaintext. Here is the syntax for the Decrypt method.

public byte[] Decrypt(
 byte[] rgb,
 bool fOAEP
)

Figure 4–3 shows the RSAAlgorithm example being used to encrypt
and decrypt a plaintext message. You enter the plaintext in the TextBox at
the top of the form. You then click on the Encrypt button, which fills in all but
the last form field, including the resulting ciphertext and RSA parameters that
were used. You then click on the Decrypt button, which displays the recov-
ered plaintext in the field at the bottom of the form. Of course, the recovered
plaintext should be identical to the original plaintext.

Now let’s look at the code in the RSAAlgorithm example code. The
buttonEncrypt_Click method is called when the user clicks on the Encrypt
button. This encrypts the contents of the plaintext textbox using the estab-
lished public RSA key. The public/private RSA key pair is provided by the
program automatically when it starts, but it may subsequently be changed
using the New RSA Parameters button. There are a few places in the code
where user interface elements are being enabled and disabled, which are not
germane to our focus on RSA functionality. Therefore, these user interface
code sections are ignored here. If you are curious about how these user inter-
face details work, please study the simple code sections following each of the
//do UI stuff comments.

We first generate the initial RSA parameters by calling the GenerateNew-
RSAParams method in the RSAAlgorithm_Load method. The GenerateNew-
RSAParams method is also called each time the user clicks on the New RSA
Parameters button, which is handled by the buttonNewRSAParams_Click
method. The GenerateNewRSAParams method is very simple. It just creates

Thorsteinson.book Page 116 Tuesday, July 29, 2003 1:53 PM

P r o g r a m m i n g w i t h . N E T A s y m m e t r i c C r y p t o g r a p h y 117

an RSACryptoServiceProvider class object, stores its public and private RSA
parameters by calling the RSA class’s ExportParameters method, and displays
a few of the more important of these parameters in the user interface. These
RSA parameters are actually stored in two fields of type RSAParameters. The
RSAParameters field named rsaParamsExcludePrivate gets a copy of the
public-only RSA parameters (i.e., the modulus and exponent values only),
which is required for encryption purposes in the buttonEncrypt_Click
method. The other RSAParameters field, named rsaParamsIncludePrivate
gets a copy of the combined public and private RSA parameters, which is
required in the buttonDecrypt_Click method.

Here is the GenerateNewRSAParams method. Note that the Export-
Parameters method is called twice. The first time, the parameter passed into
this method is true, and the second time, it is false. Passing true indicates that
you want to include all key parameter information, including the private key
information. False indicates that only the public key information is to be
stored. We separate these cases into two distinct fields to demonstrate how

FIGURE 4–3 The RSAAlgorithm example program.

Thorsteinson.book Page 117 Tuesday, July 29, 2003 1:53 PM

118 C h a p t e r 4 � Asymmetric Cryptography

the encryption will use only the public information, but the decryption will
use both the public and private key information. This is a crucial point in
understanding asymmetric cryptography. This would perhaps be even clearer
if we broke the encryption and decryption portions of this example into two
separate applications, but this example is provided as a simple monolithic
program purely for easy study. You should at some point take a moment to
verify that the encryption and decryption functions in this program do indeed
use only their own appropriate version of this RSA parameter information,
using the corresponding ImportParameters method.

private void GenerateNewRSAParams()
{
 //establish RSA asymmetric algorithm
 RSACryptoServiceProvider rsa =
 new RSACryptoServiceProvider();

 //provide public and private RSA params
 rsaParamsIncludePrivate =
 rsa.ExportParameters(true);

 //provide public only RSA params
 rsaParamsExcludePrivate =
 rsa.ExportParameters(false);

When we create an instance of the RSACryptoServiceProvider class,
we actually get the RSA implementation provided by the underlying crypto-
graphic service provider (CSP). This class is directly derived from the RSA
class. The RSA class allows other RSA implementations to be implemented as
other derived classes; however, the CSP implementation is currently the only
one available.

The two fields that store the RSA parameter information when Export-
Parameters is called are declared as RSAParameters type fields, as shown
in the following code snippet. The rsaParamsExcludePrivate filed will be
used for encryption, and the rsaParamsIncludePrivate field will be used in
decryption in this example.

//public modulus and exponent used in encryption
RSAParameters rsaParamsExcludePrivate;

//public and private RSA params use in decryption
RSAParameters rsaParamsIncludePrivate;

In the buttonEncrypt_Click method we then create a new instance of
RSACryptoServiceProvider class, and we initialize it with the stored public
key information by calling the RSA object’s ImportParameters method,

Thorsteinson.book Page 118 Tuesday, July 29, 2003 1:53 PM

P r o g r a m m i n g w i t h . N E T A s y m m e t r i c C r y p t o g r a p h y 119

specifying rsaParamsExcludePrivate as the parameter. Next, we obtain the
plaintext in the form of a byte array named plainbytes. Finally, we perform
the main function of this method by calling on the Encrypt method of the
RSA object. This returns another byte array, which is an instance field named
cipherbytes. This is an instance field rather than a local variable, because we
need to communicate this byte array to the decryption method, and local vari-
ables are not maintained across method calls.

private void buttonEncrypt_Click(
 object sender, System.EventArgs e)
{
 //do UI stuff
 ...

 //establish RSA using parameters from encrypt
 RSACryptoServiceProvider rsa =
 new RSACryptoServiceProvider();

 //import public only RSA parameters for encrypt
 rsa.ImportParameters(rsaParamsExcludePrivate);

 //read plaintext, encrypt it to ciphertext
 byte[] plainbytes =
 Encoding.UTF8.GetBytes(textPlaintext.Text);
 cipherbytes =
 rsa.Encrypt(
 plainbytes,
 false); //fOAEP needs high encryption pack

 //display ciphertext as text string
 ...

 //display ciphertext byte array in hex format
 ...

 //do UI stuff
 ...
}
...
//variable communicated from encrypt to decrypt
byte[] cipherbytes;

The buttonDecrypt_Click method is called when the user clicks on
the Decrypt button. Again, an RSA object is created. The RSA object is
repopulated with the information provided by calling the RSA object’s
ImportParameters method, but this time, the parameter to this method is
the rsaParamsIncludePrivate, which includes both public and private RSA

Thorsteinson.book Page 119 Tuesday, July 29, 2003 1:53 PM

120 C h a p t e r 4 � Asymmetric Cryptography

key information. The plaintext is then obtained by calling the Decrypt
method of the RSA object. Since a matching set of RSA algorithm parameters
were used for both encryption and decryption, the resulting plaintext matches
perfectly with the original plaintext.

private void buttonDecrypt_Click(
 object sender, System.EventArgs e)
{
 //establish RSA using parameters from encrypt
 RSACryptoServiceProvider rsa =
 new RSACryptoServiceProvider();

 //import public and private RSA parameters
 rsa.ImportParameters(rsaParamsIncludePrivate);

 //read ciphertext, decrypt it to plaintext
 byte[] plainbytes =
 rsa.Decrypt(
 cipherbytes,
 false); //fOAEP needs high encryption pack

//display recovered plaintext
...

//do UI stuff
 ...
}

...
//variable communicated from encrypt to decrypt
byte[] cipherbytes;

Saving Keys as XML
You might not always want to transmit the contents of the ExportParame-
ters object directly between arbitrary applications, especially between differ-
ent platforms and cryptographic libraries. After all, the ExportParameters
class is very Microsoft- and .NET-specific. A much more convenient and gen-
eralized format for transmitting a public key is via an XML stream.17 The Sav-

17. Transmitting a public key via an ExportParameters object or via XML is not a
security issue. Of course, you should not make a habit of transmitting private asym-
metric keys or symmetric session keys in the clear. To exchange such sensitive key
information, you must actually encrypt the encryption key. This may sound a bit
like a recursive statement, but it actually makes sense. In Chapter 6 we see how to
exchange such encrypted secret key information using established XML cryptogra-
phy standards.

Thorsteinson.book Page 120 Tuesday, July 29, 2003 1:53 PM

P r o g r a m m i n g w i t h . N E T A s y m m e t r i c C r y p t o g r a p h y 121

ingKeysAsXml example program shows how to read and write keys in XML
format. This example is almost identical to the RSAAlgorithm example we
just looked at. The significant difference is that we use XML for storing and
transmitting the public key information from the encryption method to the
decryption method rather than use an ExportParameters object. Another
slight difference is that the RSA parameter information is not displayed; the
contents of the key XML stream is displayed instead, but that is of course only
a user interface detail.

For simplicity and ease of demonstration, this example is again imple-
mented as a single monolithic application. This is purely for ease of demon-
stration, and it would be straightforward to take this example and break it up
into two separate encrypting and decrypting programs. Our purpose here is
to show both the sending (encrypting) and receiving (decrypting) code and
how the XML data is used to store key information between the two. To
make this example somewhat more realistic, the XML data is written to a file
rather than stored in a shared field, as was done in the previous example.
This simulates the case in a real-world scenario in which you would need to
read and write this information to some type of external storage or perhaps
via a socket stream. From the programmer’s perspective, the most significant
change from the previous example is that the calls to the ExportParameters
and ImportParameters methods of the RSACryptoServiceProvide class
have been replaced with calls to the ToXmlString and FromXmlString
methods of the same class. Once again, a boolean parameter is used to indi-
cate whether private information is included or excluded in the stored key
information.

Here is the GenerateNewRSAParams method, which serves the same
basic purpose as described in the previous program example. The difference
is that we are storing the key information in XML format, in two files named
PublicPrivateKey.xml and PublicOnlyKey.xml, by calling the ToXml-
String method with a boolean parameter. These two files will be used later in
the encryption and decryption functions.

private void GenerateNewRSAParams()
{
 //establish RSA asymmetric algorithm
 RSACryptoServiceProvider rsa =
 new RSACryptoServiceProvider();

 //provide public and private RSA params
 StreamWriter writer =
 new StreamWriter("PublicPrivateKey.xml");
 string publicPrivateKeyXML =
 rsa.ToXmlString(true);
 writer.Write(publicPrivateKeyXML);
 writer.Close();

Thorsteinson.book Page 121 Tuesday, July 29, 2003 1:53 PM

122 C h a p t e r 4 � Asymmetric Cryptography

 //provide public only RSA params
 writer =
 new StreamWriter("PublicOnlyKey.xml");
 string publicOnlyKeyXML =
 rsa.ToXmlString(false);
 writer.Write(publicOnlyKeyXML);
 writer.Close();

 //display public and private RSA key
 textBoxPublicKeyXML.Text = publicPrivateKeyXML;

 //do UI stuff
 ...
}

Next, let’s look at the buttonEncrypt_Click method. We create a new
RSACryptoServiceProvider object and initialize it by calling the FromXml-
String method with the public key information stored in the PublicOnly-
Key.xml file. Then we call the RSA object’s Encrypt method to perform the
cryptographic transformation on the plaintext.

private void buttonEncrypt_Click(
 object sender, System.EventArgs e)
{
 //do UI stuff
 ...

 //establish RSA asymmetric algorithm
 RSACryptoServiceProvider rsa =
 new RSACryptoServiceProvider();

 //public only RSA parameters for encrypt
 StreamReader reader =
 new StreamReader("PublicOnlyKey.xml");
 string publicOnlyKeyXML = reader.ReadToEnd();
 rsa.FromXmlString(publicOnlyKeyXML);
 reader.Close();

 //read plaintext, encrypt it to ciphertext
 byte[] plainbytes =
 Encoding.UTF8.GetBytes(textPlaintext.Text);
 cipherbytes =
 rsa.Encrypt(
 plainbytes,
 false); //fOAEP needs high encryption pack

 //display ciphertext as text string
 ...

Thorsteinson.book Page 122 Tuesday, July 29, 2003 1:53 PM

P r o g r a m m i n g w i t h . N E T A s y m m e t r i c C r y p t o g r a p h y 123

 //display ciphertext byte array in hex format
 ...

 //do UI stuff
 ...
}

Finally, the buttonDecrypt_Click method creates its own new
RSACryptoServiceProvider object, but it initializes it by calling FromXml-
String using the PublicPrivateKey.XML file, which contains both public and
private key information—a requirement of RSA decryption.

private void buttonDecrypt_Click(
 object sender, System.EventArgs e)
{
 //establish RSA using key XML from encrypt
 RSACryptoServiceProvider rsa =
 new RSACryptoServiceProvider();

 //public and private RSA parameters for encrypt
 StreamReader reader =
 new StreamReader("PublicPrivateKey.xml");
 string publicPrivateKeyXML = reader.ReadToEnd();
 rsa.FromXmlString(publicPrivateKeyXML);
 reader.Close();

 //read ciphertext, decrypt it to plaintext
 byte[] plainbytes =
 rsa.Decrypt(
 cipherbytes,
 false); //fOAEP needs high encryption pack

 //display recovered plaintext
 ...

 //do UI stuff
 ...
}

Figure 4–4 shows the SavingKeysAsXml example being used to
encrypt and decrypt a plaintext message. Notice the XML display shows con-
tents of the PublicPrivateKey.xml file that is being used by the decryption
method. It is a bit difficult to read with all the XML elements running in a sin-
gle, continuous stream, but if you look closely at it, you should be able to see
each of the RSA parameter values used. The encryption method uses only the
modulus and exponent elements.

Thorsteinson.book Page 123 Tuesday, July 29, 2003 1:53 PM

124 C h a p t e r 4 � Asymmetric Cryptography

Digital Certificates

In order to make an asymmetric algorithm such as RSA work, you need a way
to expose the public key. A public key can be shared manually, but ideally, a
CA is used to share a public key that is contained in a digital certificate (also
known as a digital ID). A digital certificate is a document that you use to
prove your identity in messages or electronic transactions on the Internet. You
can obtain a digital certificate from a trusted third party, such as Verisign, or
you can set up a locally trusted CA server within your own organization to
provide digital certificates. In Microsoft Outlook, you access a CA and gener-
ate a digital certificate by selecting the Tools | Options menu item, clicking
on the Security tab, and then clicking on the Get Digital ID button.

FIGURE 4–4 The SavingKeysAsXml example program.

Thorsteinson.book Page 124 Tuesday, July 29, 2003 1:53 PM

S u m m a r y 125

There are many commercial CAs and many levels of certificates, which
differ in cost and levels of trust. To varying degrees, the CA attempts to verify
that you are who you claim to be, and, if the CA is convinced of your identity,
it will create a document containing the public key that you provide along
with other identifying information about you. The CA will then digitally sign
that document using its own private key. Of course, nobody other than the CA
may ever see the CA’s private key, and your private key is never divulged to
anyone, including the CA. The resulting signed document is known as a digital
certificate, which the CA makes available in a database or directory service to
anyone who is interested in dealing with you in either a secure or an authenti-
cated manner. Other parties simply access the database to obtain your digital
certificate whenever they need it. Any such party can use the CA’s public key
to authenticate your digital certificate, and then use the contained public key
belonging to you to carry on with whatever encryption or authentication pro-
tocol with you that is intended.

Summary

This chapter introduced asymmetric algorithms, particularly the RSA algo-
rithm. We saw how the asymmetric algorithm can be used to solve certain
problems with symmetric algorithms by making it unnecessary to share any
secret key. We also looked at how RSA works and how to program with the
RSACryptoServiceProvider class in the .NET Framework. Finally, we looked
at how to format RSA parameters into an XML format so that they may be
shared with other parties. In the next chapter, we will continue to study asym-
metric algorithms, but we will shift our attention to digital signatures, which is
the other important aspect of asymmetric algorithms.

Thorsteinson.book Page 125 Tuesday, July 29, 2003 1:53 PM

Thorsteinson.book Page 126 Tuesday, July 29, 2003 1:53 PM

