

XML—An
Executive
Summary

❚

XML explained

❚

Advantages of XML

❚

Relating XML to HTML

❚

Relating XML to SGML

❚

Existing users and uses of XML

Chapter

5

Chapter

1

his chapter takes a look at the world of XML from a height
of approximately 30,000 feet! It is intended to serve two
purposes. Firstly, it gives readers with only 20 minutes to

spare right now, a single chunk of reading to familiarize themselves
with XML. Secondly, it sets the scene for the more comprehensive
treatment presented in the rest of the book.

Having read this chapter, you will know enough about XML to dis-
cuss it in general terms with your boss or with your colleagues. This
chapter will give you some idea of the broad areas of application of
XML and, I hope, trigger some thoughts about how you can apply
this exciting technology in your own projects.

I hope that it will also whet your appetite to dig into the rest of
the book in order to flesh out your understanding of XML. Even if
you are rushing off after this chapter, intending to return later on,
please take the time to peruse Chapter 2, which provides practical
illustrations of some areas where XML is being successfully
deployed today.

T

6

C

HAPTER

1 | XML—A

N

 E

XECUTIVE

 S

UMMARY

This chapter is set out as a dialog of questions and answers, not
unlike an Internet FAQ (Frequently Asked Questions) list. For best
results, please read the questions and answers in the order they are
presented. Ready to get started?

1.1 |

Can you explain XML in less than
half a page?

No! Too many good ideas and too many

killer applications

 of XML
exist for half a page to do it justice. But if you can only read half a
page right now, try this for size . . .

XML is a computer language for describing information. So too is
HTML. XML improves on the HTML approach and makes the
Web a better place in which to do business, to learn, and to have
fun.

HTML is a great technology, and it has changed the world. How-
ever, a great deal of useful information is

lost

 when data is converted
into HTML—information that, if preserved, can be used to build a
whole new world of computer applications on the Web.

Compare this little document:

<!-- HTML Snippet -->

<h1>

Invoice

</h1>
<p>

From: Joe Bloggs

<p>

To : A. Another

<p>

Date : 1 Feb 1999

<p>

Amount : $100.00

<p>

Tax : 21 %

<p>

Total Due : $121.00

To this little document:

<!-- XML Snippet -->

<Invoice>
<From>

Joe Bloggs

</From>
<to>

A. Another

</To>

W

H E R E

D I D

 X M L

G E T

I T S

N A M E

?

7

<Date

 year = ‘1999’ month = ‘2’ day = ‘1’

/>

<Amount currency = ‘Dollars’>

100.00

</Amount>

<TaxRate>

21

</TaxRate>

<TotalDue currency = ‘Dollars’>

121.00

</TotalDue>

</Invoice>

Now put yourself in a computer’s shoes. Which little document is
easier to process? Which one captures the most useful information?
Which has the most potential uses?

The distinction illustrated in these two snippets is the very essence
of XML. XML is all about

preserving

 useful information—informa-
tion that computers can use to be more intelligent about what they do
with our data.

You might be thinking, “Why not just add tags for

<Invoice>

,

<TaxRate>

, etc. to HTML?” This step could certainly be taken, but
where does this process end?

No

 set of tags, no matter how large, will
ever come close to providing all the tags we might conceivably want.
There must be a better way!

Well, a better way does exist, and it is called XML. XML is not a
“go-faster HTML.” It is a fundamentally different technology that
liberates information from the shackles of a fixed-tag set. For example,
if you are describing an invoice, why not call it an

<Invoice>

 rather
than a level 1 heading?

In my country (Ireland), the phrase “call a spade a spade” means
“Speak plainly. Tell it like it is.” This phrase captures the core idea of
XML rather well. It could be a mantra for XML—“call a spade a

<spade>

”!

1.2 |

Where did XML get its name?

XML is an acronym. It stands for e

X

tensible

M

arkup

L

anguage. Like
all the best acronyms, it is a TLA—

T

hree-

L

etter

A

cronym.

8

C

HAPTER

1 | XML—A

N

 E

XECUTIVE

 S

UMMARY

1.3 |

What does it do?

XML is not a software program and thus does not

do

 anything
unaided. The same can be said of HTML. XML provides a standard
approach for describing, capturing, processing, and publishing infor-
mation. It is a language that has significant benefits over HTML, as
you shall see.

1.4 |

Sounds complicated

Far from it! Indeed, the opposite is the case. XML is a set of ideas—all of
them quite simple ideas. However, it will take a while to present all these
ideas thoroughly enough to do them justice yet simply enough to be
easily digested. Trust me on this one! By the time you have reached the
end of this chapter, you will know what XML does and how it does it.

1.5 |

Can you explain the term “markup
language”?

I can use the book you are now reading to illustrate the concept of a
markup language. This book, like many books before it, began life as a
collection of electronic files. These files were created in a word processor.
As the content was created, the word processor stored extra information,
over and above the words you are now reading. This extra information
consisted of instructions to control the layout and appearance of the
words themselves. Such information is collectively known as

markup

.
The term

markup

 dates back to the days before electronic docu-
ments, when publishing professionals used to take basic text from

S

O

 X M L

I S

J U S T

A N O T H E R

M A R K U P

 L A N G U A G E ? 9

authors on paper and write markup instructions to tell the typesetter
how to make the document look good on the final printed page—
e.g., “insert a paragraph break here, make this word bold, double
space this text,” etc.

The digital world we live in is positively awash with different
markup languages. Firstly, you have the proprietary markup languages
used by word processors, desktop publishing packages, etc. Then you
have open nonproprietary markup languages such as TeX, Troff, and,
of course—the most famous nonproprietary markup language of
them all—HTML (HyperText Markup Language).

1.6 | So XML is just another markup
language?

No. XML is a markup language with a very important twist. Most
markup languages, HTML included, are fixed markup languages.
That is to say, they provide a certain feature set in their markup, and
that set is fixed in the design of the language. HTML, for example,
has a fixed set of tags with which you craft your documents—<H1>,
<P>, <TABLE>, etc. XML, on the other hand, does not define any
particular set of tags. Rather, it provides a standardized framework
with which to define your own, or to use those defined by others that
best fit your needs.

1.7 | What does XML look like?

It looks an awful lot like HTML! (This is not a coincidence, as you
will see later on.) XML documents—just like HTML documents—

10 CHAPTER 1 | XML—AN EXECUTIVE SUMMARY

consist of a mixture of data and markup. The syntax for the markup is
very reminiscent of HTML. Here is an example:

<Spice>
<Name>Sichuan Peppercorns </Name>
<CountryOfOrigin Country = "China" />
<Description> Pungent, distinctive. Excellent
with slow cooked, earthy dishes.
</Description>
<Example> Sichuan Braised Chicken </Example>
</Spice>

With XML, you have the freedom to use pretty much any names you
like to tag up your data. You can literally roll your own tags, just as I
have done here!

1.8 | So XML is extensible
because I can use it to make up my
own tags?

Exactly. Unlike most other markup languages, XML is a flexible
framework in which to create your own customized markup lan-
guages. All XML-based languages will share the same look and feel.
They will all share a common basic syntax. Beyond that, the sky is the
limit in terms of the diverse markup languages that can be built on
the foundation that XML provides.

Naturally, not everyone who uses XML will feel a compelling urge
to create his or her own markup language. The majority of people will
simply use the XML-based markup languages created by others that
best fit their purpose. Already, a number of industry standard XML-
based languages exist in fields such as Push Technologies (CDF—
Channel Definition Format), Electronic Commerce (OTP—Open
Trading Protocol) and mathematics (MML—Mathematical Markup
Language).

B U T W H Y W O U L D P E O P L E B O T H E R 11

Any language based on XML consists of a set of element types that
have been given certain names and certain meanings. Examples we
have encountered so far in this chapter include Invoice, TaxRate and
Spice element types. The presence of elements of various types in
documents is indicated by tags that serve to indicate where the ele-
ment starts and ends. For example the Spice element in the previous
document starts with a start-tag “<Spice>” and ends with an end-tag
“</Spice>”.

A set of element types serves to define types of documents and are
referred to as Document Type Definitions, or DTDs for short. Thus you
will read and hear references to the CDF DTD, the OTP DTD, the
MML DTD and so on.

1.9 | But why would people bother
to invent their own XML-based
markup language (DTD)?

The main advantage of being able to define your own markup lan-
guage is that it gives you the freedom to capture and publish useful
information about what your data is and how it is structured, instead
of having to shoe-horn it into someone else’s often ill-fitting format.
This advantage is best illustrated by example. Consider a company
running an e-Business selling PCs on the Internet.1 Here is the sort of
information the company needs to publish:

Maker : Acme PC Inc

Model : Blaster 555

Storage:

RAM: 72 MB

Hard Disk : 2 GB

1. A scenario I use extensively in this book

12 CHAPTER 1 | XML—AN EXECUTIVE SUMMARY

In order to publish this information using HTML, they need to
create a document looking something like this:

<!-- snippet of HTML -->
<h1>Personal Computers For Sale</h1>
<h2>Maker : Acme PC Inc</h2>
<h3>Model : Blaster 555</h3>
<table border = 1>
 <tr>
 <td>Storage:</td>
 </tr>
 <tr>
 <td>RAM</td><td>72 MB</td>
 </tr>
 <tr>
 <td>Hard Disk</td><td>2 GB</td>
 </tr>
</table>

Opened in an HTML browser, this information looks like Figure 1–1.
The original data has been transformed into HTML for publishing

purposes. In the course of that transformation, useful information

Figure 1–1 The PC for Sale information as shown in a Web browser

B U T W H Y W O U L D P E O P L E B O T H E R 13

about what the information really is has been lost. The HTML ver-
sion of the data knows nothing about PCs or hard disk sizes. All it
knows about are heading levels, tables, italic text, etc. As a conse-
quence, when this document is let loose on the World Wide Web,
search engines and users alike see only a collection of levels, tables,
italic text, etc., as in Figure 1–2.

Ignoring the details (and perhaps suspending disbelief!) for a
moment, let your mind chew over the possibilities arising if the com-
pany could publish this on the Web instead:

<!-- Snippet of an XML document -->
<PcForSale>
 <Maker>Acme PC Inc</Maker>
 <Model>Blaster 555</Model>
 <Storage>
 <Ram Units = "MB">72</Ram>
 <HardDisk Units = "GB">2</HardDisk>
 </Storage>
</PcForSale>

PC For Sale

TABLE

H1

World
Wide
Web

italic text

Figure 1–2 HTML document linked to the World Wide Web

14 CHAPTER 1 | XML—AN EXECUTIVE SUMMARY

I think you will agree that this representation opens up some pretty
interesting possibilities. This document can have a much richer inter-
face to the Web, an interface that presents all sorts of possibilities
about how it might be put to use, as in Figure 1–3.

By keeping information about what the pieces of data really are—
i.e., a hard disk capacity, a PC model name, etc.—you can contem-
plate:

■ Letting the browser do the work to format the data on the
user’s screen. Perhaps allowing users to choose between a
variety of “looks” or presentation formats for the same
data.

■ Letting the user’s browser perform calculations on the
data, and manipulate and display the results in a variety
of ways.

PC For Sale

Model

Maker

World
Wide
Web

Ram

igure 1–3 XML document linked to the World Wide Web

B U T W H Y W O U L D P E O P L E B O T H E R 15

■ Allowing intelligent searching of the information, e.g.,
“find all PCs for sale on the Web with disk drive capacity
greater than 2 GB.”

■ Intelligently checking that all the pieces of information
required for a proper entry on the PC selling Web page
are actually there, e.g., “all PCs must have a RAM size
element and can optionally have a hard disk size
element.”

■ Performing complex queries on the data either for your
own management purposes or as a service to customers,
e.g., “how many laptop PCs with built-in CD-ROM
drives were sold last month in Arkansas?”

■ Building rich links between different types of
information—for example, linking a sales invoice (itself
perhaps an XML document!) with the particular makes/
models of PCs it references.

■ Standardizing a set of XML element types for an entire
industry, such as PC vendors. Users and vendors alike
would benefit from the standardization. Software “robots”
could trawl the Web to find the perfect PC for you, based
on criteria you specify. Vendors would be able to easily
contrast their offerings with those of the competition via
“tick sheets” and so forth.

■ Avoiding the need to “dumb down” data into HTML
prior to publishing. This activity often involves complex
software and is frequently error prone. With XML, the
data can be stored and published in the same format. You
don’t need either batch or on-the-fly translation into
HTML (although XML allows you to continue doing
that if you so wish).

16 CHAPTER 1 | XML—AN EXECUTIVE SUMMARY

1.10 | Is some philosophical stuff
going on here that I need to know?

Yes. The core philosophy of XML has come about as a result of a long
and thoughtful analysis of what is really meant by the term “docu-
ment” in the digital world. By and large, documents consist of three
distinct components, namely:

■ Data content—the words themselves
■ Structure—the document type and the organization of its

elements, i.e., memo, contract, cooking recipe. Also, what
kind of elements it can contain and in what order they
can occur.

■ Presentation—the way the information is presented to
the reader, on a piece of paper, a browser screen or via
voice synthesis. Also, which fonts or voice inflections are
used for each element type and so on.

The central idea of XML is that significant benefits accrue to the
document owner if these three aspects of a document are kept sepa-
rate and made explicit in a computer system. Now compare and con-
trast the treatment of these three strands of a document in traditional
word processors to their treatment in XML (see Figure 1-4).

A word processor—especially a WYSIWYG word processor—
entwines content and presentation in a very tight embrace. Using
such tools, we create documents with a specific output device in
mind—typically paper of a particular width and height. As we cre-
ate the content, we are ever watchful of the appearance of the result;
we inextricably bind that content to a particular presentation.
Indeed, being able to do so is the very essence of the WYSIWYG
(What You See Is What You Get) philosophy. As for structure—cap-
turing what the information really is—the concept is hardly present

I S S O M E P H I L O S O P H I C A L S T U F F 17

at all. The only structural information stored relates to the creation
of the final paper output—details about page margins, font sizes,
and so on.

This approach is in stark contrast to that espoused by the XML
approach. The inherent structure of documents such as procedure
manuals, invoices, and tax returns is considered just as important as
the content itself. Presentation information is also, naturally, impor-
tant but is kept well separated from the content. In XML, you create
document content by concentrating on what the information really is
and how it is structured (see Figure 1–5). We defer issues to do with
presentation, leaving them to be dealt with at the point where some-
one needs to look at the document. I will come back to presentation
in “But how do I make XML look nice in a browser?” later on in this
chapter. For now, suffice it to say that an XML document can be
made to look arbitrarily beautiful without intertwining the format-
ting information with the core content of the document.

Traditional
WYSIWYG
Document

XML
Document

Structure?

Content

Presentation Structure

Content
Presentation

Figure 1–4 Content, structure, and presentation in traditional and XML
documents

18 CHAPTER 1 | XML—AN EXECUTIVE SUMMARY

1.11 | Ah! So that is what they mean
by “structured documents”!

In a word, yes.

Procedures
Manual

Front
Matter

Disclaimer
Version
History

Body
Back

Matter

Procedure Procedure

Title Instructions

Instruction Instruction

Para Para

Figure 1–5 Representing the logical structure of a document

D I D S O M E O N E J U S T S I T D O W N 19

1.12 | Did someone just sit down
and, you know, “invent” XML?

XML was certainly invented but not out of thin air1. Since 1986, an
international standard has existed for doing what XML does. In fact,
that standard does a lot more than XML does, in many respects. Its
name is SGML—Standard Generalized Markup Language—ISO
8879.

SGML is a very powerful, very general standard, but with that
power comes increased complexity. XML is a subset of SGML
intended to make SGML “light” enough for use on the Web. XML is
a proper subset of SGML. That is to say, all XML documents are valid
SGML documents. However, not all SGML documents are valid
XML documents (see Figure 1–6).

SGML has been used very successfully over the years in industries
such as technical publishing, pharmaceuticals, aerospace and so on.
Some major SGML initiatives are listed in Table 1.1.

1. Someone did sit down and invent the original form of SGML—Charles F.
Goldfarb, the editor of this series.

SGML XML

igure 1–6 The relationship of XML to SGML

20 CHAPTER 1 | XML—AN EXECUTIVE SUMMARY

1.13 | Is something wrong with SGML?

No. The complexity of implementation that is a by-product of
SGML’s power has had the effect of limiting its user base to big com-
panies that need all that power. Organizations with tens of thousands
of pages of information are typical SGML users. Having said that, the
ideas that SGML embodies are just too good and useful to be
restricted to such a niche. Hence XML—a simplified SGML that
retains most of the inherent power of SGML in a simple, tidy, easy-
to-use, easy-to-implement form.

Table 1.1 Some SGML Initiatives

Name Industry

ATA Aviation (Air Transport Authority)

DocBook Technical manuals

Text Encoding Initiative (TEI) Encoding of literature

J2008 Automotive maintenance

Edgar Financial reports for public companies

HTML Hypertext Markup Language

Pinnacles (PCIS) Semiconductor data

C A N Y O U D R A W M E A P I C T U R E 21

1.14 | Can you draw me a picture of
how all these languages are
related?

Sure! In Figure 1–7, rectangle boxes indicate applications, and ellipses
indicate framework languages or meta-languages, if you like. From it,
you can see that XML is a simplified version of SGML; and CML,
CDF, and so on are XML applications; whilst HTML, Edgar, and
Docbook, etc., are SGML applications.

SGML XML

Channel
Definition

Format (CDF)

Open
Financial

Exchange (OFX)

Chemical
Markup

Language (CML)

Text
Encoding
Iniative

DocBook

Edgar

HTML

igure 1–7 The relationships among SGML, XML, and HTML

22 CHAPTER 1 | XML—AN EXECUTIVE SUMMARY

1.15 | Can the structure of an XML
document be checked somehow?

Yes. XML includes a mechanism for defining rules that control how
documents are structured. In jargon, these are called Document Type
Definitions, or DTDs for short. In a DTD, you can arrange for XML
documents to be automatically checked in various ways. Here are
some examples.

■ A person’s name consists of an optional title, a given
name, and a surname.

■ A TV timetable contains one or more channels. Each
channel contains one or more time slots. Each time slot
has a program title and an optional description.

These effects can be achieved in the Document Type Definition by
listing the element types you wish to use in your document and indi-
cating the structural order in which they can occur. A utility program
called an XML Parser is then able to test whether or not the docu-
ment meets the prescribed rules (see Figure 1–8).

Document

Structure Rules
(DTD)

XML Rules Checker
(Parser)

Valid
XML

Invalid
XML

Figure 1–8 Checking the structure of an XML document with an XML
Parser

W H A T I F I D O N O T W A N T M Y S T R U C T U R E C H E C K E D ? 23

1.16 | What if I do not want my
structure checked?

No problem. With XML, it is perfectly okay not to rigorously check
the structure of your documents against a DTD. As long as the ele-
ments nest properly within each other, creating a tree-like structure,
the document is known as a well formed XML document. Well
formed documents are particularly suited for Internet use because
they can be processed with simple XML tools. These tools are small
and light enough to be used in everything from browser applets to
credit-card swipers to laboratory equipment.

1.17 | But how do I make XML look
nice in a browser?

In XML, presentation and content are kept separate for reasons I dis-
cussed in “Is some philosophical stuff going on here that I need to
know?” earlier in this chapter. Making XML look nice—either in a
browser or on a sheet of paper—is the responsibility of an XML sub-
sidiary standard called XSL—XML Style Language.

You may be familiar with the concept of a style sheet in a word-pro-
cessor, or you may have come across a style-sheet standard for HTML
called Cascading Style Sheets (CSS). The core idea is to capture
details about how the various elements in a document should look
and then to store them in a separate document, rather than intertwine
them with the content of the document. Separating the two allows
the presentation to be changed by simply changing the style sheet.
XSL is the proposed style-sheet language for XML. It is more power-
ful than CSS yet broadly compatible with it. In the same way that
XML is a subset of the SGML International Standard (ISO 8879),

24 CHAPTER 1 | XML—AN EXECUTIVE SUMMARY

XSL is a simplified subset of the International Standard style language
known as DSSSL (ISO/IEC 10179)—see Figure 1–9.

1.18 | What about hypertext?

With HTML, we are used to the idea of having hypertext-linking
functionality built directly into the language. In HTML, the famous
<A> element serves this purpose. As you know, XML does not pre-
define any elements, so how do you go about specifying hypertext
links? Just as in the case of presentation information, XML delegates
the task of capturing hypertext information to a subsidiary standard
known as XLL—eXtensible Link Language (see Figure 1–10).

SGML
ISO 8879

DSSSL
ISO/IEC 10179

+
CSS

XML

XSL

Figure 1–9 The relationship between XML, XSL, and ISO Standards

S O X M L I S B A S E D O N T R U L Y I N T E R N A T I O N A L S T A N D A R D S ? 25

The XLL standard draws heavily upon an existing standard for
expressing hypertext links in SGML documents, known as HyTime
(yet another ISO standard—ISO/IEC 10744). It also draws on the
wealth of experience in dealing with complex hypertext linking that has
built up over the years in the SGML-based Text Encoding Initiative.

1.19 | So XML is based on truly
international standards?

Right down to its toes! XML is derived from SGML (ISO 8879),
XSL is derived from DSSSL (ISO/IEC 10179), and XLL is derived
from HyTime (ISO/IEC 10744). On top of that, the native charac-
ter set of XML is Unicode (ISO/IEC 10646). Any system that
declares itself to be XML-compliant must be able to handle the Uni-

SGML
ISO 8879

HyTime
ISO/IEC 10744

+
TEI

XLL
DSSSL

ISO/IEC 10179
+

CSS

XML

XSL

Figure 1–10 Adding XLL to the family of XML standards

26 CHAPTER 1 | XML—AN EXECUTIVE SUMMARY

code character set. Unicode, with its multiple byte characters, sup-
ports a wide variety of languages and alphabets. Support for
Unicode is becoming increasingly common; it is directly supported
in programming languages such as Java and in operating systems
such as Windows NT and AIX.

1.20 | Where does all this leave HTML
and the concept of a browser?

In pretty good shape, actually! XML can usefully be seen as a general-
ization of the information-publishing paradigm pioneered by HTML
and the World Wide Web. HTML is not threatened by XML. In fact,
a direct comparison of the two is meaningless. XML is a framework
for making markup languages; HTML is an example of a markup lan-
guage. If HTML is like a slice of bread, XML is like a bakery. If
HTML is a red rose, XML is a greenhouse.

In fact, not only are HTML and XML not in competition, but
HTML may well one day become an XML application!

1.21 | Why not just let people invent
proprietary languages—why base
them on XML?

The primary reason is to ensure that your information can leverage
the existing set of open standards, tools, and expertise available for
XML. For too long now, the lowest common denominator in the doc-
ument world has been plain text. XML builds on top of plain text,

W H E R E D O E S X M L F I T I N 27

allowing layers of useful information to be captured along with basic
data, and it does so in a completely application-independent, vendor-
independent fashion.

With the range of uses to which XML is being put and the range of
XML software (much of it free!) that is available, it will become
increasingly difficult for developers to cost-justify inventing yet
another proprietary syntax. This difficulty is a good thing. Every pro-
prietary syntax creates another isolated island of information and
another doubling of the world’s already bulging set of file conversion
utilities!

1.22 | Where does XML fit in
with other information
technology standards?

XML is, first and foremost, a document technology. Having said that,
the XML approach to information as a threesome of content, struc-
ture, and presentation cuts right across the world of Information
Technology. XML can be gainfully applied to database modeling, for
example. Also, nothing, in principle, can prevent XML from being
used as a graphics file format! It would not be terribly space-efficient,
but that is not the point. The point is that XML’s modeling power has
significant depth. Who knows where it will be applied outside its ini-
tial realm of documents? It may well emerge as a base interchange
framework for all electronic data.

28 CHAPTER 1 | XML—AN EXECUTIVE SUMMARY

1.23 | If XML is so clever, how come the
Web was not designed that way in
the first place?

The Web started out with modest aims—to allow easy dissemination
of information amongst a group of scientists at CERN. It has
expanded somewhat since then! Given the original requirements,
HTML was a very good design, easy to read and easy to write, both
for humans and computers.

However, the scope of the Internet has extended at such a pace that
the sheer simplicity of HTML—on one hand the Web’s greatest
asset—is becoming one of its greatest weaknesses. To extend the Web
into areas now envisaged for it—such as electronic commerce, health-
care information, on-line voting and the like—the Web needs a more
extensible, robust, and formally defined standard. We owe HTML a
great debt of gratitude. It has opened our eyes to a whole new vista of
possibilities for Information Technology. It still has a significant role
to play as a standard display format. However, it will become just one
of a family of markup languages in everyday use on the World Wide
Web—the vast majority of them based on XML.

1.24 | Okay. Sounds good, but let’s cut
to the chase. Who out there is
using XML and for what
purposes?

Here are some corporate names you may recognize:

■ Microsoft
■ Netscape

O K A Y . S O U N D S G O O D , B U T L E T ’ S C U T T O T H E C H A S E . 29

■ Sun Microsystems
■ Adobe
■ IBM
■ Corel
■ Hewlett-Packard

Here are some XML application areas you may recognize:

■ Online Banking
■ Push Technology
■ Web Automation
■ Database Publishing
■ Software Distribution

Would you care to see some proof? Proceed to Chapter 2, where I
take a closer look at some of these real-world XML applications.

