
In this chapter, we will be reviewing the traditional approaches to designing data ware-
houses. During the review we will investigate whether or not these methods are still appro-
priate now that the business imperatives have been identified. We begin this chapter by
picking up on the introduction to data warehousing.

DIMENSIONAL DATA MODELS

In Chapter 2, we introduced data warehousing and described, at a high level, how we
might approach a design. The approach we adopted follows the style of some of the major
luminaries in the development of data warehousing generally. This approach to design can
be given the general description of dimensional. Star schemes and snowflake schemes are
both examples of a dimensional data model.

The dimensional approach was adopted in our introduction for the following reasons:

• Dimensional data models are easy to understand. Therefore, they provide an ideal
introduction to the subject.

• They are unambiguous.

61

Design Problems We Have
to Face Up To

Chapter 3



• They reflect the way that business people perceive their businesses.

• Most RDBMS products now provide direct support for dimensional models.

• Research shows that almost all the literature supports the dimensional approach.

Unfortunately, although the dimensional model is generally acclaimed, there are
alternative approaches and this has tended to result in “religious” wars (but no deaths as
far as I know).

Even within the dimensional model camp there are differences of opinion. Some
people believe that a perfect star should be used in all cases, while others prefer to see the
hierarchies in the dimensions and would tend to opt for a snowflake design.

Where deep-rooted preferences exist, it is not the purpose of this book to try to make
“road to Damascus” style conversions by making nonbelievers “see the light.” Instead, it
is intended to present some ideas and systematic arguments so that readers of this book can
make their own architectural decisions based on a sound understanding of the facts of the
matter. In any case, I believe there are far more serious design issues that we have to con-
sider once we have overcome these apparent points of principle. Principles aside, we have
also to consider any additional demands that customer relationship management might
place on the data architecture.

A good objective for this chapter would be to devise a general high-level data archi-
tecture for data warehousing. In doing so, we’ll discuss the following issues:

1. Dimensional versus third normal form (3NF) models

2. Stars versus snowflakes

3. What works for CRM

Dimensional Versus 3NF

There are two principal arguments in favor of dimensional models:

1. They are easy for business people to understand and use.

2. Retrieval performance is generally good.

The ease of understanding and ease of use bit is not in dispute. It is a fact that busi-
ness people can understand and use dimensional models. Most business people can oper-
ate spreadsheets and a dimensional model can be likened to a multidimensional spread-
sheet. We’ll be exploring this in Chapter 5 when we start to investigate the dot modeling
methodology.

The issue surrounding performance is just as clear cut. The main RDBMS vendors
have all tweaked their query optimizers to enable them to recognize and execute dimen-
sional queries more efficiently, and so performance is bound to be good in most instances.
Even so, where the dimension tables are massively large, as the customer dimension can

62 Chapter 3



be, joins between such tables and an even bigger fact table can be problematic. But this is
not a problem that is peculiar to dimensional models. 3NF data structures are optimized
for very quick insertion, update, and deletion of discrete data items. They are not opti-
mized for massive extractions of data, and it is nonsensical to argue for a 3NF solution on
the grounds of retrieval performance.

What Is Data Normalization?

Normalization is a process that aims to eliminate the unnecessary and uncontrolled
duplication of data, often referred to as ‘data redundancy’. A detailed examination of nor-
malization is not within the scope of this book. However, a brief overview might be help-
ful (for more detail see Bruce, 1992, or Batini et al., 1992).

Normalization enables data structures to be made to conform to a set of well-defined
rules. There are several levels of normalization and these are referred to as first normal
form (1NF), second normal form (2NF), third normal form (3NF), and so on. There are
exceptions, such as Boyce-Codd normal form (BCNF), but we won’t be covering these.
Also, we won’t explore 4NF and 5NF as, for most purposes, an understanding of the lev-
els up to 3NF is sufficient.

In relational theory there exists a rule called the entity integrity rule. This rule con-
cerns the primary key of any given relation and assigns to the key the following two
properties:

1. Uniqueness. This ensures that all the rows in a relational table can be uniquely
identified.

2. Minimality. The key will consist of one or more attributes. The minimality
property ensures that the length of the key is no longer than is necessary to
ensure that the first property, uniqueness, is guaranteed.

Within any relation, there are dependencies between the key attributes and the non-
key attributes. Take the following Order relation as an example:

Order
Order number Primary key
Item number Primary key
Order date
Customer ID
Product ID
Product description
Quantity

Design Problems We Have to Face Up To 63



Dependencies can be expressed in the form of “determinant” rules, as follows:

1. The Order Number determines the Customer ID.

2. The Order Number and Item Number determine the Product ID.

3. The Order Number and Item Number determine the Product Description.

4. The Order Number and Item Number determine the Quantity.

5. The Order Number determines the Order Date.

Notice that some of the items are functionally dependent on Order Number (part of
the key), whereas others are functionally dependent on the combination of both the Order
Number and the Order Item (the entire key). Where the dependency exists on the entire
key, the dependency is said to be a fully functional dependency.

Where all the attributes have at least a functional dependency on the primary key,
the relation is said to be in 1NF. This is the case in our example. Where all the attributes
are engaged in a fully functional relationship with the primary key, the relation is said to
be in 2NF. In order to change our relation to 2NF, we have to split some of the attributes
into a separate relation as follows:

These relations are now in 2NF, since all the nonkey attributes are fully functionally
dependent on their primary key.

There is one relationship that we have not picked up so far: The Product ID determines
the Product Description. This is known as a transitive dependency because the Product ID
itself can be determined by the combination of Order Number and Order Item (see depen-
dency 2 above). In order for a relation to be classified as a 3NF relation, all transitive depen-
dencies must be removed. So now we have three relations, all of which are in 3NF:

Order
Order number Primary key
Order date
Customer ID

Order Item
Order number Primary key
Item number Primary key
Product ID
Product description
Quantity

64 Chapter 3



There is one major advantage in a 3NF solution and that is flexibility. Most opera-
tional systems are implemented somewhere between 2NF and 3NF, in that some tables will
be in 2NF, whereas most will be in 3NF. This adherence to normalization tends to result
in quite flexible data structures. We use the term flexible to describe a data structure that
is quite easy to change should the need arise. The changing nature of the business require-
ments has already been described and, therefore, it must be advantageous to implement a
data model that is adaptive in the sense that it can change as the business requirements
evolve over time.

But what is the difference between dimensional and normalized?
Let’s have another look at the simple star schema for the Wine Club, from Figure

2.3, which we first produced in our introduction in Chapter 2 (see Figure 3.1).
Some of the attributes of the customer dimension are:

Order
Order number Primary key
Order date
Customer ID

Order Item
Order number Primary key
Item number Primary key
Product ID
Quantity

Product
Product ID Primary key
Product description

Design Problems We Have to Face Up To 65

Wine

Sales

Depot

Customer

Time Figure 3.1 Star schema for the Wine
Club.



This dimension is currently in 2NF because, although all the nonprimary key
columns are fully functionally dependent on the primary key, there is a transitive depen-
dency in that the account manager name can also be determined from the account manager
ID. So the 3NF version of the customer dimension above would look like this:

The diagram is shown in Figure 3.2.
So what we have done is convert a star into the beginnings of a snowflake and, in

doing so, have started putting the model into 3NF. If this process is carried out thoroughly
with all the dimensions, then we should have a complete dimensional model in 3NF.

Well, not quite. We need also to look at the fact table. But first, let’s go back to the
original source of the Sales fact table, the Order, and Order Item table.

They have the following attributes:

Customer Dimension
Customer ID (Primary key)
Customer name
Street address
Town
County
Zip Code
Account manager ID

Account Manager Dimension
Account Manager ID
Account Manager Name

Customer Dimension
Customer ID (Primary key)
Customer name
Street address
Town
County
Zip Code
Account manager ID
Account manager name

66 Chapter 3



Both these tables are in 3NF. If we were to collapse them into one table, called Sales,
by joining them on the Order Number, then the resulting table would look like this

Sales
Order number (Primary key part 1)
Order item (Primary key part 2)
Customer ID
Wine ID
Time
Depot ID
Quantity
Value

Order
Order number (Primary key)
Customer ID
Time

Order Items
Order number (Primary key)
Order item (Primary key)
Wine ID
Depot ID
Quantity
Value

Design Problems We Have to Face Up To 67

Wine

Sales

Depot

Customer

Account
Manager

Time Figure 3.2 Third normal form version of
the Wine Club dimensional model.



This table is now in 1NF because the Customer ID and Time, while being function-
ally dependent on the primary key, do not display the property of “full” functional depen-
dency (i.e., they are not dependent on the Order Item).

In our dimensional model, we have decided not to include the Order Number and
Order Item details. If we remove them, is there another candidate key for the resulting
table? The answer is, it depends! Look at this version of the Sales table:

The combination of Customer ID, Wine ID, and Time have emerged as a composite
candidate key. Is this realistic? The answer is yes, it is. But, it all depends on the Time. The
granularity of time has to be sufficiently fine as to ensure that the primary key has the
property of uniqueness. Notice that we did not include the Depot ID as part of the primary
key. The reason is that it does not add any further to the uniqueness of the key and, there-
fore, its inclusion would violate the other property of primary keys, that of minimality.

The purpose of this treatise is not to try to convince you that all dimensional mod-
els are automatically 3NF models; rather, my intention is to show that it is erroneous to say
that the choice is between dimensional models and 3NF models. The following sums up
the discussion:

1. Star schemes are not usually in 3NF.

2. Snowflake schemes can be in 3NF.

Stars and Snowflakes

The second religious war is being fought inside the dimensional model camp. This is the
argument about star schema versus snowflake schema.

Kimball (1996) proscribes the use of snowflake schemas for two reasons. The first
is the effect on performance that has already been described. The second reason is that
users might be intimidated by complex hierarchies.

My experience has shown his assertion, that users and business people are uncom-
fortable with hierarchies, to be quite untrue. My experience is, in fact, the opposite. Most
business people are very aware of hierarchies and are confused when you leave them out
or try to flatten them into a single level.

Kimball (1996) uses the hierarchy in Figure 3.3 as his example.

Sales
Customer ID (Primary key part 1)
Wine ID (Primary key part 2)
Time (Primary key part 3)
Depot ID
Quantity
Value

68 Chapter 3



It is possible that it is this six-layer example in Figure 3.3 that is confusing and
intimidating, rather than the principle. In practice, hierarchies involving so many layers are
almost unheard of. Far more common are hierarchies like the one reproduced from the
Wine Club case study, shown in Figure 3.4.

These hierarchies are very natural to managers because, in real-life scenarios, cus-
tomers are organized into geographic areas or market segments and the managers’ desire
is to be able to ask questions about the business performance of this type of segmentation.
Similarly, managers are quite used to comparing the performance of one department
against other departments, or one product range against other product ranges.

The whole of the business world is organized in a hierarchical fashion. We live in a
structured world. It is when we try to remove it, or flatten it, that business people become
perplexed. In any case, if we present the users of our data warehouse with a star schema,
all we have done, in most instances, is precisely that: We have flattened the hierarchy in a
kind of “denormalization” process.

So I would offer a counter principle with respect to snowflake schemas:

There is no such thing as a true star schema in the eyes of business people. They
expect to see the hierarchies.

Where does this get us? Well, in the dimensional versus 3NF debate, I suspect a cer-
tain amount of reading-between-the-lines interpretation is necessary and that what the 3NF
camp is really shooting for is the retention of the online transaction processing (OLTP)
schema in preference to a dimensional schema. The reason for this is that the OLTP model
will more accurately reflect the underlying business processes and is, in theory at least,
more flexible and adaptable to change. While this sounds like a great idea, the introduc-
tion of history usually makes this impossible to do. This is part of a major subject that
we’ll be covering in detail in Chapter 4.

It is worth noting that all online analytical processing (OLAP) products also imple-
ment a dimensional data model. Therefore, the terms OLAP and dimensional are synony-
mous.

This brings us neatly onto the subject of data marts. The question “When is it a data
warehouse and when is it a data mart”? has also been the subject of much controversy.

Design Problems We Have to Face Up To 69

Product Package
Size

DepartmentBrand Sub
Category

Category

Figure 3.3 Confusing and intimidating hierarchy.

Customer Sales
Area

Manager Figure 3.4 Common organizational
hierarchy.



Often, it is the commercial interests of the software vendors that carry the greatest influ-
ence. The view is held, by some, that the data warehouse is the big, perhaps enterprise-
wide, repository and that data marts are much smaller, maybe departmental, extractions
from the warehouse that the users get to analyze.

By the way, this is very closely associated with the previous discussion on 3NF ver-
sus dimensional models. Even the most enthusiastic supporter of the 3NF/OLTP approach
is prepared to recognize the value that dimensional models bring to the party when it
comes to OLAP. In a data warehouse that has an OLAP component, it is that OLAP com-
ponent that the users actually get to use. Sometimes it is the only part of the warehouse
that they have direct access to. This means that the bit of the warehouse that the users actu-
ally use is dimensional, irrespective of the underlying data model. In a data warehouse that
implements a dimensional model, the bit that the users actually use is, obviously, also
dimensional. Therefore, everyone appears to agree that the part that the users have access
to should be dimensional. So it appears that the only thing that separates the two camps is
some part of the data warehouse that the users do not have access to.

Returning to the issue about data marts, we decline to offer a definition on the basis
that a subset of a data warehouse is still a data warehouse. There is a discussion on OLAP
products generally in Chapter 10.

WHAT WORKS FOR CRM

Data warehousing is now a mature business solution. However, the evolution of business
requires the evolution of data warehouses. That business people have to grasp the CRM
nettle is an absolute fact. In order to do this, information is the key. It is fair to say that an
organization cannot be successful at CRM without high-quality, timely, and accurate infor-
mation. You cannot determine the value of a customer without information. You cannot
personalize the message to your customer without information, and you cannot assess the
risk of losing a customer without information.

If you want to obtain such information, then you really do need a data warehouse. In
order to adopt a personalized marketing approach, we have to know as much as we can
about our customers’ circumstances and behavior. We described the difference between
circumstances and behavior in the section on market segmentation in Chapter 1. The capa-
bility to accurately segment our customers is one the important properties of a data ware-
house that is designed to support a CRM strategy. Therefore, the distinction between cir-
cumstances and behavior, two very different types of data, is crucial in the design of the
data warehouse. Let’s look at the components of a “traditional” data warehouse to try and
determine how the two different types of data are treated.

The diagram in Figure 3.5 is our now familiar Wine Club example.
It remains in its star schema form for the purposes of this examination, but we could

just as easily be reviewing a snowflake model. 
The first two questions we have to ask are whether or not it contains information

about:

70 Chapter 3



1. Customers’ behavior

2. Customers’ circumstances

Clearly it does. The Sales table (the Fact table) contains details of sales made to cus-
tomers. This is behavioral information, and it is a characteristic of dimensional data ware-
houses and data marts that the Fact table contains behavioral information. Sales is a good
example, probably the most common, but there are plenty more from all industries:

• Telephone call usage

• Shipments and deliveries

• Insurance premiums and claims

• Hotel stays

• Aircraft flight bookings

These are all examples of the subject of a dimensional model, and they are all
behavioral.

The customer dimension is the only place where we keep information about cus-
tomer circumstances. According to Ralph Kimball (1996), the principal purpose of the cus-
tomer dimension, as with all dimensions in a dimensional model, is to enable constraints
to be placed on queries that are run against the fact table. The dimensions merely provide
a convenient way of grouping the facts and appear as row headers in the user’s result set.
We need to be able to slice and dice the Fact table data “any which way.” A solution based
on the dimensional model is absolutely ideal for this purpose. It is simply made for slic-
ing and dicing.

Returning to the terms behavior and circumstances, a dimensional model can be
described as behavior centric. It is behavior centric because its principal purpose is to
enable the easy and comprehensive analysis of behavioral data.

It is possible to make a physical link between Fact tables by the use of a common
dimension tables as the diagram in Figure 3.6 shows.

This “daisy chain” effect enables us to “drill across” from one star schema to
another. This common dimension is sometimes referred to as a conformed dimension.

Design Problems We Have to Face Up To 71

Wine

Sales

Depot

Customer

Time Figure 3.5 Star schema for the Wine
Club.



We have seen previously how the first-generation data warehouses tended to focus
on the analysis of behavioral information. Well, the second generation needs to support big
business issues such as CRM and, in order to do this effectively, we have to be able to
focus not only on behavior, but circumstances as well.

Customer Behavior and Customer Circumstances–The Cause-and-Effect Principle

We have explored the difference between customers’ circumstances and their behavior, but
why is it important?

Most of the time in data warehousing, we have been analyzing behavior. The Fact
table in a traditional dimensional schema usually contains information about a customer’s
interaction with our business. That is: the way they behave toward us. In the Wine Club
example we have been using, the Fact table contained information about sales. This, as has
been shown, is the normal approach toward the development of data warehouses.

Now let us look again at one of the most pressing business problems, that of cus-
tomer loyalty and its direct consequence, that of customer churn. For the moment let us
put ourselves in the place of a customer of a cellular phone company and think of some
reasons why we, as a customer, may decide that we no longer wish to remain as a customer
of this company:

• Perhaps we have recently moved to a different area. Maybe the new area has a
poor reception for this particular company.

• We might have moved to a new employer and have been given a mobile phone as
part of the deal, making the old one surplus to requirements.

• We could have a child just starting out at college. The costs involved might
require economies to be made elsewhere, and the mobile phone could be the lux-
ury we can do without.

Each of the above situations could be the cause for us as customers to appear in next
month’s churn statistics for this cellular phone company. It would be really neat if the
phone company could have predicted that we are a high-risk customer. The only way to do
that is to analyze the information that we have gathered and apply some kind of predictive
model to the data that yields a score between, say, 1 for a very low risk customer to 10 for
a very high risk customer.

72 Chapter 3

Sales Profit

Figure 3.6 Sharing informa-
tion.



But what type of information is likely to give us the best indication of a customer’s
propensity to churn? Remember that, traditionally, data warehouses tend to be organized
around behavioral systems. In a mobile telephone company, the most commonly used
behavioral information is the call usage. Call usage provides information about:

• Types of calls made (local, long distance, collect, etc.)

• Durations of calls

• Amount charged for the call

• Time of day

• Call destinations

• Call distances

If we analyze the behavior of customers in these situations, what do you think we
will find? I think we can safely predict that, just before the customer churned, they stopped
making telephone calls! The abrupt change in behavior is the effect of the change in cir-
cumstances.

The cause-and-effect principles can be applied quite elegantly to the serious prob-
lem of customer churn and, therefore, customer loyalty. What we are seeing when we ana-
lyze behavior is the effect of some change in the customer’s circumstances. The change in
circumstances, either directly or indirectly, is the cause of their churning. If we analyze
their behavior, it is simply going to tell us something that we already know and is blind-
ingly obvious–the customer stopped using the phone. By this time it is usually far too late
to do anything about it.

In view of the fact that most dimensional data warehouses measure behavior, it
seems reasonable to conclude that such models may not be much help in predicting those
customers that we are at risk of losing. We need to turn our attention to being very much
more rigorous in our approach to tracking changes in circumstances, rather than behavior.
Thus, the second-generation data warehouses that are being built as an aid to the develop-
ment of CRM applications need to be able to model more than just behavior.

So instead of being behavior centric, perhaps they should be dimension centric or
even circumstances centric. The preferred term is customer centric. Our second-generation
data warehouses will be classified as customer centric.

Does this mean that we abandon behavioral information? Absolutely not! It’s just
that we need to switch the emphasis so that some types of information that are absolutely
critical to a successful CRM strategy are more accessible.

So what does this mean for the great star schema debate? Well, all dimensional
schemes are, in principle, behavioral in nature. In order to develop a customer-centric
model we have to use a different approach.

If we are to build a customer-centric model, then it make sense to start with a model
of the customer. We know that we have two major information types–behavior and cir-
cumstances. For the moment, let’s focus in on the circumstances. Some of the kinds of
things we might like to record about customers are:

Design Problems We Have to Face Up To 73



Of course, there are many, many more pieces of information that we could hold
(check out Appendix D to see quite a comprehensive selection), but this little list is suffi-
cient for the sake of example. At first sight, we might decide that we need a customer
dimension as shown in Figure 3.7.

The customer dimension in Figure 3.7 would have some kind of customer identifier
and a set of attributes like those listed in the table above. But that won’t give us what we
want. In order to enable our users to implement a data warehouse that supports CRM, one
of the things they must be able to do is analyze, measure, and classify the effect of changes
in a customer’s circumstances. As far as we, that means the data architects, are concerned,
a change in circumstances simply means a change in the value of some attribute. But,
ignoring error corrections, not all attributes are subject to change as part of the ordinary
course of business. Some attributes change and some don’t. Even if an attribute does
change, it does not necessarily mean that the change is of any real interest to our business.
There is a business issue to be resolved here.

We can illustrate these points if we look a little more closely at the simple list of
attributes above. Ignoring error corrections, which are the attributes that can change? Well,
in theory at least, with the exception of the date of birth, they can all change. Now, there
are two types of change that we are interested in:

1. Changes where we need to be able to see the previous values of the attribute,
as well as the new value

2. Changes where the previous values of the attribute can be lost

What we have to do is group the attributes into these two different types. So we end
up with a model with two entities like the one in Figure 3.8.

Customer
Name
Address
Telephone number
Date of birth
Sex
Marital status

74 Chapter 3

Customer

Figure 3.7 General model for 
customer details.

Customer
Customer
Changing

Circumstances

Figure 3.8 General model for a
customer with changing circum-
stances.



We are starting to build a general conceptual model for customers. For each cus-
tomer, we have a set of attributes that can change as well as a set of attributes for which
either they cannot change or, if they do, we do not need to know the previous values.
Notice that the relationship has a cardinality of one to many. Please note this is not meant
to show that there are many attributes that can change; it actually means that each attribute
can change many times. For instance, a customer’s address can change quite frequently
over time.

In the Wine Club, the name, telephone number, date of birth, and sex are customer
attributes where the business feels that either the attributes cannot change or the old val-
ues can be lost. This means that the address and marital status are attributes where the pre-
vious values should be preserved. So, using the example, the model should look as shown
in Figure 3.9.

So each customer can have many changes of address and marital status, over time.
Now, the other main type of data that we need to capture about customers is their

behavior. As we have discussed previously, the behavioral information comes from the
customers’ interaction with our organization. The conceptual general model that we are
trying to develop must include behavioral information. It is shown in Figure 3.10.

Again the relationship between customers and their behavior is intended to show that
there are many behavioral instances over time. The actual model for the Wine Club would
look something like the diagram in Figure 3.11.

Each of the behavioral entities (wine sales, accessories, and trips) probably would
have previously been modeled as part of individual subject areas in separate star schemas
or snowflake schemas. In our new model, guess what? They still could be! Nothing we
have done so far means that we can’t use some dimensional elements if we want to and,
more importantly, if we can get the answers we need. Some sharp-eyed readers at this point
might be tempted into thinking, “Just hold on a second, what you’re proposing for the cus-
tomer is just some glorified form of common (or conformed) dimension, right?.” Well, no.

Design Problems We Have to Face Up To 75

Customer Address

Marital
Status

Figure 3.9 Example model showing customer with
changing circumstances.

Customer
Behavior

Customer
Customer
Changing

Circumstances

Figure 3.10 The general model extended to include behavior.



There is, of course, some resemblance in this model to the common dimension model that
was described earlier on. But remember this: The purpose of a dimension, principally, is
to constrain queries against the fact table. The main purpose of a common dimension is to
provide a drill across facility from one fact table to another. They are still behavior-centric
models. It is not the same thing at all as a model that is designed to be inherently customer
centric. The emphasis has shifted away from behavior, and more value is attached to the
customer’s personal circumstances. This enables us to classify our customers into useful
and relevant segments. The difference might seem quite subtle, but it is, nevertheless, sig-
nificant.

Our general model for a customer centric-data warehouse looks very simple, just
three main entity types. Is it complete? Not quite. Remember that there were three main
types of customer segmentation. The first two were based on circumstances and behavior.
We have discussed these now at some length.

The third type of segment was referred to as a derived segment. Examples of derived
segments are things like “estimated life time value” and “propensity to churn.” Typically,
the inclusion and classification of a customer in these segments is determined by some cal-
culation process such as predictive modeling. We would not normally assign a customer a
classification in a derived segment merely by assessing the value of some attribute. It is
sensible, therefore, to modify our general model to incorporate derived segments, as
shown in Figure 3.12.

So this is it. The diagram in Figure 3.12 is the boiled-down general model for a cus-
tomer centric data warehouse. In theory, it should be able to answer almost any question
we might care to throw at it. I say “in theory” because in reality the model will be far more
complex than this. We will need to be able to cope with customers whose classification

76 Chapter 3

Customer Address

Marital
Status

Wine
Sales

Trips

Accessories

Figure 3.11 The example model extended to include behavior.



changes. For example, we might have a derived segment called “life time value” where
every customer is allocated an indicator with a value from, say, 1 to 20. Now, Lucie Jones
might have a lifetime value indicator of “9.” But when Lucie’s salary increases, she might
be allocated a lifetime value indicator of “10.” It might be useful to some companies to
invent a new segment called, say, “increasing life time values.” This being the case, we
may need to track Lucie’s lifetime value indicator over time. When we bring time into our
segmentation processes, the possibilities become endless. However, the introduction of
time also brings with it some very difficult problems, and these will be discussed in the
next chapter.

Our model can be described as a general conceptual model (GCM) for a customer-
centric data warehouse. The GCM provides us with a template from which all our actual
conceptual models in the future can be derived. While we are on the subject of conceptual
models, I firmly believe it is high time that we reintroduce the conceptual, logical, and
physical data model trilogy into our design process.

Whatever Happened to the Conceptual/Logical/Physical Trilogy?

In the old days there was tradition in which we used a three-stage process for designing a
database. The first model that was developed was called the conceptual data model and it
was usually represented by an entity relationship diagram (ERD). The purpose of the ERD
was to provide an abstraction that represented the data requirements of the organization.
Most people with any experience of database design would be familiar with the ERD
approach to designing databases.

One major characteristic of the conceptual model is that it ought to be able to be
implemented using any type of database. In the 1970s, the relational database was not the
most widely used type of DBMS. In those days, the databases tended to be:

1. Hierarchical databases

2. Network databases

Design Problems We Have to Face Up To 77

Customer
Behavior

Customer

Customer
Derived

Segment

Customer
Changing

Circumstances

Figure 3.12 General conceptual model for a customer-centric data warehouse.



The idea was that the DBMS to be ultimately deployed should not have any influ-
ence over the way in which the requirements were expressed. So the conceptual data
model should not imply the technology to be used in implementing the solution.

Once the DBMS had been chosen, then a logical model would be produced. The log-
ical model was normally expressed as a schema in textual form. So, for instance, where
the solution was to be implemented using a relational database, a relational schema would
be produced. This consisted of a set of relations, the relationships expressed as foreign key
constraints, and a set of domains from which the attributes of the relations would draw
their values.

The physical data model consisted of the data definition language (DDL) statements
that were needed to actually build, in a relational environment, the tables, indexes, and
constraints. This is sometimes referred to as the implementation model.

One of the strengths of the trilogy is that decisions relating to the logical and phys-
ical design of the database could be taken and implemented without affecting the abstract
model that reflected the business requirements.

The astonishing dominance of relational databases since the mid-1980s has led, in
practice, to a blurring of the boundaries between the three models, and it is not uncom-
mon nowadays for a single model to be built, again in the form of an ERD. This ERD is
then converted straight into a set of tables in the database. The conceptual model, logi-
cal model, and physical model are treated as the same thing. This means that any
changes that are made to the design for, say, performance-enhancing reasons are
reflected in the conceptual model as well as the physical model. The inescapable con-
clusion is that the business requirements are being changed for performance reasons.
Under normal circumstances, in OLTP-type databases for instance, we might be able to
debate the pros and cons of this approach because the business users don’t ever get near
the data model, and it is of no interest to them. They can, therefore, be shielded from it.
But data warehouses are different. There can be no debate; the users absolutely have to
understand the data in the data warehouse. At least they have to understand that part of
it that they use. For this reason, the conceptual data model, or something that can replace
its intended role, must be reintroduced as a necessary part of the development lifecycle
of data warehouses.

There is another reason why we need to reinvent the conceptual data model for data
warehouse development. As we observed earlier, in the past 15 years, the relational data-
base has emerged as a de facto standard in most business applications. However, to use the
now well worn phrase, data warehouses are different. Many of the OLAP products are
nonrelational, and their logical and physical manifestations are entirely different from the
relational model. So the old reasons for having a three-tier approach have returned, and we
should respond to this.

The Conceptual Model and the Wine Club

Now that we have the GCM, we can apply its principles to our case study, the Wine Club.
We start by defining the information about the customer that we want to store. In the Wine
Club we have the following customer attributes:

78 Chapter 3



The attributes have to be divided into two types:

1. Attributes that are relatively static (or where previous values can be lost)

2. Attributes that are subject to change

Customer’s Static Information
Title
Name 
Telephone number
Date of birth
Sex
Customer’s Changing Information
Address
Marital status
Childrens’ details
Spouse details
Income
Hobbies and interests
Trade or profession
Employers’ details

Customer Information
Title
Name 
Address
Telephone number
Date of birth
Sex
Marital status
Childrens’ details
Spouse details
Income
Hobbies and interests
Trade or profession
Employers’ details

Design Problems We Have to Face Up To 79



We now construct a model like the one in Figure 3.13.
This represents the customer static and changing circumstances. The behavior model

is shown in Figure 3.14.
Now, thinking about derived segments, these are likely to be very dynamic in the

sense that some derived segments will change over time, some will remain fairly static
over time, and others still will appear for a short while and then disappear. Some examples
of these, as they apply to the Wine Club, are:

Lifetime value. This is a great way of classifying customers, and every organi-
zation should try to do this. It is an example of a fairly static form of segmen-
tation. We would not expect dramatic changes to customers’ positions here. It

80 Chapter 3

Customer

ChildMarital
Status

Income

Address

Spouse

Profession EmployerHobby/
Interest

Figure 3.13 Wine Club customer changing circumstances.

Figure 3.14 Wine Club customer behavior.

Wine
Sales

Customer

Accessory
Sales

Trips
Taken



would be good to know which customers are on the “generally increasing” and
the “generally decreasing” scale.

Recently churned. This is an example of a dynamic classification that will be
constantly changing. The ones that we lose that had good lifetime value clas-
sifications would appear in our “Win back” derived segment.

Special promotions. These can be good examples where a kind of “one-off”
segment can be used effectively. In the Wine Club there would be occasions
when, for instance, it needs to sell off a particular product quickly. The
requirement would be to determine the customers most likely to buy the prod-
uct. This would involve examination of previous behavior as well as circum-
stances (e.g., income category in the case of an expensive wine). The point is
that this is a “use once” segment.

Using the three examples above, our derived segments model looks as shown in
Figure 3.15.

There is a design issue with segments generally, and that is their general dynamic
nature. The marketing organization will constantly want to introduce new segments. Many
of them will be of the fairly static and dynamic types that will have long lives in the data
warehouse. What we don’t want is for the data warehouse administrator to have to get
involved in the creation of new tables each time a new classification is invented. This, in
effect, results in frequent changes to the data warehouse structure and will lead to the mar-
keting people getting involved in complex change control procedures and might ultimately
result in a stifling of creativity. So we need a way of allowing the marketing people to add
new derived segments without involving the database administrators too much. Sure, they
might need help in expressing the selection criteria, but we don’t want to put too many
obstacles in their path. This issue will be explored in more detail in Chapter 7—the phys-
ical model.

Design Problems We Have to Face Up To 81

Lifetime 
Value Customer

Special
Promotions

Recently
Churned

and
Win back

Figure 3.15 Derived segment examples for the Wine Club.



SUMMARY

I have a theory, which is that data warehousing has always been about customer relation-
ships. It’s just that previously we didn’t entirely make the connection, because, in the early
days, CRM had not really been recognized as any kind of discipline at the systems level.
The advent of CRM has put the spotlight firmly back on data warehousing.

Data warehouses provide the technology to enable us to perform customer relation-
ship analysis. The management of the relationship is the value that is added by the busi-
ness. This is the decision-making part. The warehouse is doing what it has always done,
providing decision support. That is why this book is about supporting customer relation-
ship management.

In this chapter we have been looking at some of the design issues and tried to quan-
tify and rationalize some aspects of data warehouse design that have been controversial in
the past. There are good reasons for using dimensional schemas, but there are cases where
they can work against us. The best solution for CRM is to use dimensional models where
they absolutely do add value, in modeling customers’ behavior, but to use more “conven-
tional” approaches when modeling customers’ circumstances.

Toward the end of the chapter we developed a general conceptual model (Figure
3.12) for a customer-centric data warehouse. We will develop this model later on in this
book by applying some of the needs of our case study, the Wine Club.

Firstly, however, the awfully thorny subject of time has to be examined.

82 Chapter 3


