
Transactions

In an enterprise system, maintaining the
integrity of data across various applications and machines is critical. Regard-
less of the scope of the application, at least some aspects of transaction pro-
cessing have to be implemented to guarantee the integrity of the data.
However, developing code to handle data integrity can be very challenging.
In this chapter, we will look at the issues involved and examine how the trans-
action support under COM+ helps simplify component development.

THE STOCK TRADER

We need an example to explore the transaction support under COM+. As I
have dabbled in trading stocks over the Internet, I would like to use a simple
stock trading system as an example. As for those lessons learned when trad-
ing stocks, I will leave that for another book.

Our brokerage firm, MyBroker.com, allows clients to trade stocks over
the Internet. In order to do so, a client has to maintain an account with the
firm.

Figure 8.1 identifies the requisite components to set up our stock trad-
ing system. The figure also illustrates the interaction between these compo-
nents.

The trading system is based on a three-tier Windows DNA strategy.

The presentation layer (the first tier) is a Web-based user interface.

The business logic (the second tier) consists of three components:
AccountMgmt.DLL, StockExchange.DLL, and TradeMgmt.DLL.

The data for the clients and the stocks is stored in two different data-
bases (the third tier): AccountsDB and StocksDB.

C H A P T E R 8

363

8867D-7-08 8/16/00 11:23 AM Page 363

The account management component maintains the clients’ accounts.
The stock management component maintains the stocks’ database. The trade
management component lets the client buy a stock. It interacts with the other
two components to update the respective databases.

The Database Layer

In this application, the Microsoft Data Engine (MSDE) will be the database
server. It is a Microsoft SQL Server 7.0-compatible data storage server and is
packaged with Microsoft Office 2000. Details of installing MSDE can be
found in the MSDN article “Creating and Deploying Access Solutions with
the Microsoft Data Engine” [Smi-99] by Scott Smith.

364 Chapter 8 • Transactions

Figure 8.1 A sample stock trading system.

Web Client

IIS Server

Trade Mgmt
DLL

Stock
Exchange

DLL

Stocks

Account
Management

DLL

Accounts

8867D-7-08 8/16/00 11:23 AM Page 364

Using MSDE

MSDE comes with a command line program, osql.exe. We will use this pro-
gram to create our databases. To use this program interactively, you can type:

osql.exe –U userid

where userid is the identification of the user allowed to access the database
server. In our example, the userid is sa and the password field is empty.

Program osql.exe also lets you run SQL statements in a batch mode.
Simply create a file containing the SQL statements and run the program spec-
ifying the filename as a parameter, as shown in the following example:

osql.exe –U sa –i MyQueryFile.sql

That’s it as far as using MSDE goes. Now let’s create our databases!

The Accounts Database

The AccountsDB database maintains account balances for our clients. It
contains one table, Accounts, that defines two fields, Client (the client’s
name) and Balance (funds that can be used to purchase stocks). Table 8.1
shows the data stored in this table.

Table 8.1 AccountsDB Database

Client Balance

Don 100000

Chris 90000

Richard 80000

To create this database, run the following SQL statements:

create database AccountsDB
go
use AccountsDB
create table Accounts ([Client] varchar (15) NOT NULL,

[Balance] int NOT NULL)
create unique index Client on Accounts([Client])
insert into Accounts Values ('Don', '100000')
insert into Accounts Values ('Chris', '90000')
insert into Accounts Values ('Richard', '80000')
go
quit

The Stock Trader 365

8867D-7-08 8/16/00 11:23 AM Page 365

The go SQL statement explicitly forces the execution of preceding SQL
statements. For more information on SQL statements, consult the MSDE
documentation.

The Stocks Database

The StocksDB database maintains information on the stocks that are cur-
rently traded on our fictitious stock exchange. It contains one table, Stocks,
that defines three fields, Symbol (for stock symbols), Shares (number of
outstanding shares for the stock that may be purchased at the market price),
and MarketPrice (current market price for the stock). Table 8.2 shows the
data stored in the Stocks table.

Table 8.2 StocksDB Database

Symbol Shares MarketPrice

MSFT 50000 95

INTC 30000 75

To create this database, run the following SQL statements:

create database StocksDB
go
use StocksDB
create table Stocks ([Symbol] varchar (5) NOT NULL,

[Shares] int NOT NULL,
[MarketPrice] int NOT NULL)

create unique index [Symbol] on Stocks([Symbol])
insert into Stocks Values ('MSFT', '50000', 95)
insert into Stocks Values ('INTC', '30000', 75)
go
quit

Now let’s take a look at the various components of the business logic.

The Business Logic

The Account Management Component

Component AccountMgmt.DLL is used to update the AccountsDB data-
base. It has just one interface, IAccountMgr, that supports just one method,
Debit. The interface is defined as follows:

366 Chapter 8 • Transactions

8867D-7-08 8/16/00 11:23 AM Page 366

interface IAccountMgr : IDispatch
{

HRESULT Debit([in] BSTR bsClient, [in] long lAmount);
};

Method Debit decreases the account balance of the specified client by
the amount specified. The implementation is shown in the following code
fragment:

STDMETHODIMP CAccountMgr::Debit(BSTR bsClient, long
lAmount)
{

try {
ADOConnectionPtr spConn = OpenAccountsDB();
long lCurrentBalance = GetBalance(spConn, bsClient);
if (lCurrentBalance < lAmount) {

return Error(_T("Not enough balance"),
GUID_NULL, E_FAIL);

}
long lNewBalance = lCurrentBalance - lAmount;
UpdateBalance(spConn, bsClient, lNewBalance);

}
catch(_com_error& e) {

return Error(static_cast<LPCTSTR>(e.Description()),
GUID_NULL, e.Error());

}

return S_OK;
}

The code snippet here uses Microsoft’s Active Data Objects (ADO) to
manipulate the database. ADO simplifies programming by isolating the
details of underlying ODBC (Open Database Connectivity) drivers and/or
native OLE DB drivers. In the simulation program, ADO uses a native OLE
DB driver called SQLOEDB to access the MSDE database. Covering ADO is
beyond the scope of this book. However, the code snippets that I will be pre-
senting should illustrate the use of ADO interfaces clearly. More information
on ADO can be found on the Microsoft platform SDK documentation. In
particular, the SDK article, “Migrating from DAO to ADO using ADO with
the Microsoft Jet Provider” [Hen-99] has a great introduction to ADO.

Method Debit calls OpenAccountsDB to open the AccountsDB data-
base. It then calls GetBalance to obtain the balance for the specified client.
Finally, it calls UpdateBalance to update the account balance for the client.
The implementation of these methods is as follows:

The Stock Trader 367

8867D-7-08 8/16/00 11:23 AM Page 367

// File StdAfx.h
...
#import "c:\program files\common files\system\ado\msado15.dll"\

rename ("EOF", "adoEOF")
typedef ADODB::_ConnectionPtr ADOConnectionPtr;
typedef ADODB::_RecordsetPtr ADORecordsetPtr;

#define CHECKHR(hr) \
{ if (FAILED(hr)) _com_issue_error(hr); }

// File AccountMgr.cpp

ADOConnectionPtr CAccountMgr::OpenAccountsDB()
{

ADOConnectionPtr spConn;
HRESULT hr =

spConn.CreateInstance(__uuidof(ADODB::Connection));
CHECKHR(hr);

// Use native OLE DB driver for MSDE when connecting to
// to the database
_bstr_t bsDSN = "provider=sqloledb;database=AccountsDB";
_bstr_t bsUser = "sa";
hr = spConn->Open (bsDSN, bsUser, (LPCTSTR) NULL, NULL);
CHECKHR(hr);
return spConn;

}

long CAccountMgr::GetBalance(ADOConnectionPtr spConn,
BSTR bsClient)

{
ADORecordsetPtr spRS;
HRESULT hr = spRS.CreateInstance(__uuidof(ADODB::Recordset));
CHECKHR(hr);

// Construct a SQL query
TCHAR buf[256];
_stprintf(buf,

_T("SELECT * FROM Accounts WHERE [client] = '%S'"),
(LPCWSTR) bsClient);

// Get the recordset
_variant_t vConn = static_cast<IDispatch*>(spConn);
hr = spRS->Open(buf, vConn, ADODB::adOpenKeyset,

ADODB::adLockPessimistic, ADODB::adCmdText);
CHECKHR(hr);

return spRS->Fields->Item["Balance"]->Value;
}

368 Chapter 8 • Transactions

8867D-7-08 8/16/00 11:23 AM Page 368

void CAccountMgr::UpdateBalance(ADOConnectionPtr spConn,
BSTR bsClient, long lBalance)

{
// Construct a SQL statement to update the balance
TCHAR buf[256];
_stprintf(buf,

_T("UPDATE Accounts SET Balance = %ld WHERE
[client] = '%S'"), lBalance, (LPCWSTR) bsClient);

// Execute the SQL statement
_variant_t vRecordCount;
spConn->Execute(buf, &vRecordCount,-1);

}

In the code above, if any ADO call fails, an exception of type
_com_error is issued and further processing is stopped.

The Stock Exchange Component

This component supports one interface, IStockMgr. The interface is described
as follows:

interface IStockMgr : IDispatch
{

HRESULT BuyStock([in] BSTR bsSymbol, [in] long lShares,
[out, retval] long* plValue);

};

Method BuyStock checks to see if the requested stock symbol and the
requested number of shares are available in the StocksDB database. If a
match is found, it reduces the number of available shares in the database and
returns the total value of the trade, which is the product of the number of
requested shares and the market price of the stock. The implementation for
this method follows:

STDMETHODIMP CStockMgr::BuyStock(BSTR bsSymbol,
long lRequestedShares, long *plValue)

{
try {

ADOConnectionPtr spConn = OpenStocksDB();

long lAvailableShares, lMarketPrice;
GetStockInfo(spConn, bsSymbol, lAvailableShares,

lMarketPrice);
if(lAvailableShares < lRequestedShares) {

return Error(_T("Not enough shares"),

The Stock Trader 369

8867D-7-08 8/16/00 11:23 AM Page 369

GUID_NULL, E_FAIL);
}
// Reduce the available number of shares
lAvailableShares -= lRequestedShares;
UpdateAvailableShares(spConn, bsSymbol, lAvailableShares);
*plValue = lRequestedShares * lMarketPrice;

}
catch(_com_error& e) {

return Error(static_cast<LPCTSTR>(e.Description()),
GUID_NULL, E_FAIL);

}

return S_OK;
}

The code here references two methods, GetStockInfo and
UpdateAvailableShares. Their implementation is similar to those we
saw earlier for the account management component. Consequently, the
implementation is not shown here.

The Trade Management Component

Our final component of the business logic, the trade manager, is responsible
for the overall management of buying stocks. It supports an interface,
ITradeMgr. The interface is defined as follows:

interface ITradeMgr : IDispatch
{

HRESULT BuyStocks([in] BSTR bsClient, [in] BSTR bsSymbol,
[in] long lShares);

};

Interface method BuyStocks attempts to buy the specified number of
shares for the specified stock on behalf of the specified client. To accomplish
this, the trade manager interacts with the other two components of the busi-
ness logic. The implementation for this method is as follows:

STDMETHODIMP CTradeMgr::BuyStocks(BSTR bsClient, BSTR bsSymbol,
long lShares)

{
try {

//
// First operation - Obtain the stocks.
//
IStockMgrPtr spStockMgr(__uuidof(StockMgr));
long lAmount = spStockMgr->BuyStock(bsSymbol, lShares);

370 Chapter 8 • Transactions

8867D-7-08 8/16/00 11:23 AM Page 370

//
// Second operation - Debit the clien't account balance
//
IAccountMgrPtr spAccountMgr(__uuidof(AccountMgr));
spAccountMgr->Debit(bsClient, lAmount);

}catch(_com_error& e) {
return Error(static_cast<LPCTSTR>(e.Description()),

GUID_NULL, e.Error());
}

return S_OK;
}

The Simulation

Consider the case when one of the clients, say, Don, wants to buy 100 shares
of MSFT. The following VbScript code shows the logic:

set TradeMgr = CreateObject("TradeMgmt.TradeMgr")
TradeMgr.BuyStocks "Don", "MSFT", 100

When this code is executed, 100 shares of MSFT are removed from the
StocksDB database, and Don’s account balance is debited by $9500 (recall
that the market price of MSFT was $95).

To verify that the transaction succeeded, you can query the databases by
running osql.exe. This is left as an exercise for you.

Now, consider another scenario. Let’s say another client, Chris, wants
to buy 1000 shares of MSFT. The following VBScript code shows the logic:

set TradeMgr = CreateObject("TradeMgmt.TradeMgr")
TradeMgr.BuyStocks "Chris", "MSFT", 1000

When this code is executed, 1000 shares of MSFT are removed from the
StocksDB database. However, Chris’ account balance will not get debited, as
he does not have sufficient funds; he is short by $5000.

This transaction has created a problem for us. A thousand shares of
MSFT have just disappeared from the exchange. At this rate, our stock
exchange will pretty soon run into the ground!

An obvious solution is to modify the code so that the stocks are inserted
back into the market in case of a failure. However, this solution is neither prac-
tical nor maintainable for transactions that involve many complex operations to
perform. Moreover, it violates many important requirements for a transaction.

Let’s examine the requirements for a transaction.

The Stock Trader 371

8867D-7-08 8/16/00 11:23 AM Page 371

TRANSACTION THEORY

For our brokerage firm example, a “buy stock” transaction consists of the fol-
lowing two operations:

• Reduce the number of available shares for the specified stock in the
StocksDB database.

• Debit the balance in the AccountDB database.

A transaction must be such that it entirely succeeds or entirely fails.
This implies that all of the operations involved in the transaction must be
updated successfully or nothing should be updated at all. This all-or-nothing
proposition of a transaction is called atomicity.

A transaction must be consistent. Any individual operation within a
transaction may leave the data in such a state that it violates the system’s
integrity. In our case, after the completion of the first operation, some shares
have been taken out of the market. After the completion of the second opera-
tion, either the system should roll back to the original state (restore the shares
that were taken out), or, upon success, go to a new state that still maintains
the overall integrity of the system.

Now consider the case of concurrent transactions. Suppose that 100
shares of a stock X are available in the StocksDB database, and transaction
A, consisting of two operations, is in progress. The first operation has added
50 shares of X into the StocksDB database. This change should be commit-
ted only if the second operation succeeds. However, before the second opera-
tion completes, another transaction, B, tries to obtain 125 shares of X from
the database. Transaction B is able to use the uncommitted changes from
transaction A; it actually sees 150 shares of X in the database. This is prob-
lematic. What happens if the second operation of transaction A fails and thus
the first operation has to be rolled back? Transaction B has been infected with
data that never really existed.

To avoid such problems, the system should isolate the uncommitted
changes. Transaction B should only be able to see the data in the state before
transaction A begins or in the state after transaction A completes, but not in
some half-baked condition between the two states.

Finally, a transaction must be durable, that is, when a transaction is com-
mitted, the data sources involved must guarantee that the updates will persist,
even if the computer crashes (or the power goes off) immediately after the
commit. This requires specialized transaction logging that would allow the
data source’s restart procedure to complete any unfinished operation.

372 Chapter 8 • Transactions

8867D-7-08 8/16/00 11:23 AM Page 372

Atomicity, consistency, isolation, and durability; a transaction should
support these properties. This is the ACID test for transactions.

Most transactions are not reversible. However, some irreversible transactions
can be undone by applying an equal but opposite transaction. An example of
such a pair of operations is registering and unregistering a COM server. A
transaction that can undo another transaction is referred to as a compensating
transaction.

At this point, it is worth considering what implications this has on the
underlying components. How on earth can you ensure that the changes in the
system can be unwound if the transaction is aborted at some point? Even for
our relatively simple example with just two operations, it is not a trivial task.
Think about a transaction that involves many such operations.

Fortunately, COM+ provides the infrastructure to ease dealing with
transactions.

Let’s see it in action.

COM+ SUPPORT FOR TRANSACTIONS

At 25,000 feet, the support for transaction under COM+ is very straightfor-
ward. A transaction spans across many objects (that may access different
databases). If an operation from any one object involved in the transaction
fails, it indicates its failure status to COM+. The COM+ infrastructure can
then roll back the changes to all the databases involved in the transaction.

A little clarification is in order. All the operations in a transaction need
not always deal with databases, though a database operation is the most fre-
quent use-case. Sending an e-mail or copying a file, for example, could also
be considered as part of the transaction, and may require a rollback. Gener-
ally speaking, rollbacks are applied to any transactional resource, a database
being just one such resource.

Two basic questions arise:

• How does the COM+ infrastructure know if an object will participate
in a transaction?

• How does the object indicate, or vote, on the status of its operation?

Let’s tackle the first question.

COM+ Support for Transactions 373

8867D-7-08 8/16/00 11:23 AM Page 373

Configuring Transactions

COM+ defines an attribute on a component called the transaction attribute.
By setting this attribute, a component tells COM+ to manage transactions on
its behalf. When the component’s object is activated, COM+ looks at the
transaction attribute to determine the type of transaction protection it must
provide in the object’s context.

Why can’t COM+ assume that a component will always participate in
a transaction?

Forcing every object to participate in a transaction is not practical. The
overhead of adding transaction protection to the context object is not accept-
able for a component that has no interest in supporting a transaction.

The transaction attribute can be set from the Component Services snap-
in. The property-page for setting transactional attributes is shown in Figure 8.2.

374 Chapter 8 • Transactions

Figure 8.2 Transactional settings on a component.

8867D-7-08 8/16/00 11:23 AM Page 374

The transaction attribute can be set to one of the following values:

• Required: This value implies that a component must have a transac-
tion in order to do its work. If the component’s object is activated
within the context of an existing transaction, the transaction is propa-
gated to the new object. If the activator’s context has no transactional
information, COM+ will create a brand new context containing trans-
actional information and attach it to the object.

• Required New: Sometimes an object may wish to initiate a new trans-
action, regardless of the transactional status of its activator. When the
required-new value is specified, COM+ will initiate a new transaction
that is distinct from the activator’s transaction. The outcome of the new
transaction has no effect on the outcome of the activator’s transaction.

• Supported: A component with this value set indicates that it does not
care for the presence or absence of a transaction. If the activator is par-
ticipating in a transaction, the object will propagate the transaction to
any new object that it activates. The object itself may or may not par-
ticipate in the transaction.

This value is generally used when the component doesn’t really need a
transaction of its own but wants to be able to work with other components.

• Not Supported: The component has no interest in participating in a
transaction, regardless of the transactional status of its activator. This
guarantees that the component’s object will neither vote in its activa-
tor’s transaction nor begin a transaction of its own, nor will it propa-
gate the caller’s transaction to any object that it activates. This value
should be chosen if you wish to break the continuity of an existing
transaction.

Not supported is the default value for all components.

• Disabled: If a component will never access a transactional resource,
setting the transaction attribute to disabled eliminates any transaction-
related overhead for the component. This attribute simulates the trans-
action behavior of a non-configured component.

The transaction attribute on a component can also be specified in the
IDL file. The SDK defines the following constants. These constants are
defined in the header file <mtxattr.h>.

• TRANSACTION_REQUIRED

• TRANSACTION_REQUIRES_NEW

COM+ Support for Transactions 375

8867D-7-08 8/16/00 11:23 AM Page 375

• TRANSACTION_SUPPORTED

• TRANSACTION_NOT_SUPPORTED

The transaction attribute can be specified on the coclass entry in the
IDL file, as shown here:

import "oaidl.idl";
import "ocidl.idl";
#include <mtxattr.h>
...
[

uuid(0AC21FA4-DB2A-474F-A501-F9C9A062A63E),
helpstring("AccountMgr Class"),
TRANSACTION_REQUIRED

]
coclass AccountMgr
{

[default] interface IAccountMgr;
};

When the component is installed, the Catalog Manager (see Chapter 5)
automatically configures the component with the value specified in the IDL
file. However, the administrator can override this value from the Component
Service snap-in at any time.

Now, let’s get the answer to the second question—how does an object
cast its vote in a transaction?

Programmatic Voting

Once the components are set to participate in a transaction, each of the com-
ponent’s objects participating in the transaction has to indicate the outcome
of its operation(s) individually.

Recall from Chapter 5 that, for a configured component, the state of the con-
text object is available to the component’s object via interface IContextState.
This interface has a method on it called SetMyTransactionVote. Following is
its prototype:

HRESULT SetMyTransactionVote(TransactionVote txVote);

Parameter txVote can be set to one of two possible values: TxAbort
to indicate that an operation failed, and TxCommit to indicate that the opera-
tion succeeded.

376 Chapter 8 • Transactions

8867D-7-08 8/16/00 11:23 AM Page 376

Let’s revise the account management code to use SetMyTransac-
tionVote. The following code fragment shows the changes:

STDMETHODIMP CAccountMgr::Debit(BSTR bsClient, long lAmount)
{

CComPtr<IContextState> spState;
HRESULT hr = ::CoGetObjectContext(__uuidof(IContextState),

(void**) &spState);
if (FAILED(hr)) {

return hr;
}

try {
ADOConnectionPtr spConn = OpenAccountsDB();
long lCurrentBalance = GetBalance(spConn, bsClient);
if (lCurrentBalance < lAmount) {

spState->SetMyTransactionVote(TxAbort);
return Error(_T("Not enough balance"), GUID_NULL,

E_FAIL);
}
long lNewBalance = lCurrentBalance - lAmount;
UpdateBalance(spConn, bsClient, lNewBalance);

}
catch(_com_error& e) {

spState->SetMyTransactionVote(TxAbort);
return Error(static_cast<LPCTSTR>(e.Description()),

GUID_NULL, e.Error());
}

spState->SetMyTransactionVote(TxCommit);
return S_OK;

}

Similar changes need to be made to the stock manager and the trade
manager components. The following code fragment shows the changes for
the trade management component:

STDMETHODIMP CTradeMgr::BuyStocks(BSTR bsClient, BSTR bsSymbol,
long lShares)

{
CComPtr<IContextState> spState;
HRESULT hr = ::CoGetObjectContext(__uuidof(IContextState),

(void**) &spState);
if (FAILED(hr)) {

return hr;
}

COM+ Support for Transactions 377

8867D-7-08 8/16/00 11:23 AM Page 377

try {
//
// First operation - Obtain the stocks.
//
IStockMgrPtr spStockMgr(__uuidof(StockMgr));
long lAmount = spStockMgr->BuyStock(bsSymbol, lShares);

//
// Second operation - Debit the clien't account balance
//
IAccountMgrPtr spAccountMgr(__uuidof(AccountMgr));
spAccountMgr->Debit(bsClient, lAmount);

}catch(_com_error& e) {
spState->SetMyTransactionVote(TxAbort);
return Error(static_cast<LPCTSTR>(e.Description()),

GUID_NULL, e.Error());
}

spState->SetMyTransactionVote(TxCommit);
return S_OK;

}

Let’s run the simulation once again. Remember to set all the three com-
ponents with the Required transactional attribute and to reset both the data-
bases to the original values.

For your review, the VBScript code for the base client is shown below:

set TradeMgr = CreateObject("TradeMgmt.TradeMgr")
TradeMgr.BuyStocks "Chris", "MSFT", 1000

When the above code is executed, the transaction will fail, as Chris does
not have enough funds to buy the stock. This result is the same as before.
However, the difference will become apparent when you examine the
StocksDB database. The number of shares for MSFT has not changed, unlike
the earlier simulation where 1000 shares of MSFT just disappeared from the
database.

COM+ provided automatic transaction support and rolled back the
changes when the transaction failed.

This brings us to a new set of questions—how did COM+ know the
type of resource a component uses? The simulation program never informed
COM+ that it used two MSDE databases. What if the simulation used a nor-
mal file as one of the resources? Each type of resource involved in a transac-
tion requires its own specialized rollback. Surely, it is not possible for the

378 Chapter 8 • Transactions

8867D-7-08 8/16/00 11:23 AM Page 378

COM+ infrastructure to have an intimate knowledge of rolling back changes
for every possible resource type. How, then, can it still support transactions?

It’s time to look at the architecture.

THE ARCHITECTURE

Resource Managers

COM+ is an infrastructure. As an infrastructure, it should handle any
resource generically; and not know the details of any specific resource.

To access and modify the durable state of a resource in a generic fashion,
COM+ relies on a software component called the Resource Manager (RM).

A resource manager is a software component that has an intimate
knowledge of a specific type of resource, such as a relational database. Under
the influence of a transaction, the RM keeps track of the changes made to the
resource. If the transaction aborts, the RM can roll back these changes on the
resource and bring it back to the original state. A simple RM, for example,
may buffer the changes made to the resource and persist the changes only if
the transaction commits.

There are many commercially available RMs, including the ones for
Microsoft SQL Server, Oracle, IBM DB2, Informix, and Sybase. The database
server used in the simulation program, MSDE, also provides its own RM.

When a client instantiates an RM, the client gets a proxy to the RM.
OLE DB drivers and ODBC drivers are examples of RM proxies. The RM
proxy provides APIs to access the RM. Typically, the RM proxy provides
COM interfaces, although it is not a requirement. ODBC drivers, for exam-
ple, do not provide COM interfaces.

An RM proxy is typically implemented as part of another software component
called the Resource Dispenser (RD). Unlike a resource manager that manages
the durable state of a resource, a resource dispenser manages the non-durable
state of the resource, such as the number of connections to a resource. We will
cover resource dispensers in Chapter 11 when we discuss scalability issues.

A transaction can involve many resource managers who may span mul-
tiple machines across the network. If some operation in a transaction fails, all
the participating resource managers need to be informed so that the changes
to the resources can be rolled back. This implies that some service should
exist that can coordinate all the resource managers involved in the distributed

The Architecture 379

8867D-7-08 8/16/00 11:23 AM Page 379

transaction. This service does exist and is called the Microsoft Distributed
Transaction Coordinator (MS-DTC).

The Distributed Transaction Coordinator

As the name implies, the Distributed Transaction Coordinator (DTC) coordi-
nates a transaction that could potentially be distributed across the network.
More precisely, the DTC manages the resource managers. Based on the out-
come of a transaction, it informs each of the participating resource managers
to either abort or commit the changes to their respective resources.

Each system that needs to use transactions must have the DTC installed.
If you install MS SQL Server or MSDE, the MS-DTC automatically gets
installed.

The MS-DTC is a Windows NT service that can be started and stopped from
the service control panel or from the MS-DTC property page in the Compo-
nent Services snap-in.

A non-transactional client (transactional clients let COM+ manage their
transactions) can obtain the DTC using the SDK API DtcGetTransac-
tionManager and explicitly request to begin a new transaction. The follow-
ing code snippet illustrates the process of using the DTC:

CComPtr<ITransactionDispenser> spTxDisp;
HRESULT hr = DtcGetTransactionManager(

NULL, // host name
NULL, // TM name
__uuidof(ITransactionDispenser), // interface
0, // reserved
0, // reserved
0, // reserved
(void**) &spTxDisp); // [out] pointer

CComPtr<ITransaction> spTx;
hr = spTxDisp->BeginTransaction(

NULL, // outer component
ISOLATIONLEVEL_ISOLATED, // Isolation level
ISOFLAG_RETAIN_DONTCARE, // Isolation flag
NULL, // Options
&spTx); // [out] pointer

380 Chapter 8 • Transactions

8867D-7-08 8/16/00 11:23 AM Page 380

... // Enlist RMs and perform resource updates

if (bSuccess) {
spTx->Commit(0, XACTTC_SYNC_PHASEONE, 0);

}else {
spTx->Abort(NULL, 0, FALSE);

}

When the non-transactional client requests a new transaction, the DTC
(more precisely, a part of the DTC called the transaction manager) dispenses
the transaction as a pointer to interface ITransaction. The client can then
enlist other appropriate RMs to participate in the transaction.

This COM+ mechanism of letting a non-transactional component han-
dle a transaction manually is referred to as Bring Your Own Transaction
(BYOT). An interesting use of BYOT is to manually create a transaction with
an arbitrary, long timeout [Mar-00].

The DTC identifies each transaction uniquely as a C structure of type
XACTUOW. A client can obtain this identification by calling ITransac-
tion::GetTransactionInfo. As we will see later, COM+ reinterprets
this structure as a GUID.

To commit a transaction, the client calls ITransaction::Commit. At
this point, the DTC requests each of the enlisted RMs to commit its changes.

What if one of the RMs run into some internal problem and fails to commit?

Two-Phase Commit

To ensure that the all-or-nothing proposition is maintained for a transaction,
the DTC mandates that each RM attempt the commitment in two phases, pre-
pare and commit.

In the prepare phase, the RM should do everything it takes to ensure
that the commit phase does not fail. It is up to the developer of the RM to
define what “everything” means and how to make it happen. All possible
internal problems that an RM can run into should be returned as an appropri-
ate error in this phase.

If no problems are encountered during the prepare phase, the RM saves
all of its state information in such a manner that failure to commit can no
longer occur. It then returns from the prepare phase with a successful status
indicating that it is ready to make the changes permanent.

In the commit phase, the RM applies the just-saved state information
and makes the changes permanent. This phase should not fail, unless it runs
into some catastrophe such as a power shutdown.

The Architecture 381

8867D-7-08 8/16/00 11:23 AM Page 381

With the breakup of a transaction commitment into two phases, the
interaction between the DTC and the RMs gets simplified. The following is
the algorithm:

• The client requests the DTC to commit the transaction.

• The DTC sends a prepare request to each RM that has been enlisted in
the transaction. Upon receiving this request, an RM prepares its inter-
nal state.

• If any RM returns a failure status during the prepare phase, the DTC
informs the rest of the RMs to abort their changes.

• If all the RMs respond positively to the prepare request, the DTC
requests each RM to commit its changes.

What if the RM runs into a catastrophic failure, such as a power shut-
down, in the middle of the commitment phase?

It is the responsibility of the RM to persist its internal state after the
prepare phase so that it will survive a system failure. Recall that this require-
ment comes from the durability property of the ACID test.

This brief introduction to the DTC and RM is enough for our current
discussion. For more information, check out Richard Grimes’ book, Profes-
sional Visual C++ 6 MTS Programming [Gri-99], that has one whole chapter
dedicated to the DTC. Also, see Jonathan Pinnock’s book, Professional
DCOM Application Development [Pin-98], for an example of developing
your own resource manager and resource dispenser.

Let’s see how COM+ supports transactions automatically.

Automatic Transactions through COM+

A configured component indicates its interest in participating in a transaction
by means of the transaction attribute.

When an object from such a component is activated, COM+ sets up the
object’s context to handle transactions.

COM+ automatically begins a transaction when it encounters either of
the following conditions:

1. When a non-transactional client activates an object whose component
has its transaction attribute set to either the TRANSACTION_REQUIRED
or TRANSACTION_REQUIRES_NEW values.

382 Chapter 8 • Transactions

8867D-7-08 8/16/00 11:23 AM Page 382

2. When a transactional client calls an object whose component has its
transaction attribute set to the TRANSACTION_REQUIRES_NEW value.

The object responsible for beginning a new transaction is referred to as
the root object of that transaction. As we will see shortly, this root object has
a special role in completing the transaction.

As a corollary, an object whose transaction attribute is set to TRANSAC-
TION_REQUIRES_NEW will always be a root object.

When the root object is activated, COM+ transparently asks the DTC
for a new transaction. The DTC returns an ITransaction pointer that
COM+ stores in the object’s context.

An object that subsequently gets activated within the boundary of this
transaction, and is marked as either TRANSACTION_REQUIRED or TRANSAC-
TION_SUPPORTED, will share the transaction.

A collection of one or more contexts that share a transaction is referred
to as a transaction stream.

To ensure that all the contexts within a transaction stream share only
one transaction at a time, COM+ mandates a component that requires a trans-
action should also require synchronization. Recall from Chapter 5 that
COM+ sets up such a component to run under an activity.

More precisely, a transaction stream is completely contained inside an
activity, but an activity can contain more than one transaction stream.

If an object is participating in a transaction, it can obtain its transaction
ID from its context, as shown in the following code fragment:

CComPtr<IObjectContextInfo> spInfo;
HRESULT hr = CoGetObjectContext(__uuidof(IObjectContextInfo),

(void**) &spInfo);
_ASSERT (SUCCEEDED(hr));

GUID tid;
hr = spInfo->GetTransactionId(&tid);
_ASSERT (SUCCEEDED(hr));

Note that COM+ returns the transaction ID as a GUID, and not as a
XACTUOW structure.

When a transactional object accesses a transactional resource for the
first time, the data access layer (such as ODBC and OLE DB) accesses the
context’s transaction automatically and enlists the corresponding RM with
the DTC. In our simulation program, for example, when the account manager
object opens the AccountsDB database using ADO, the underlying OLE DB

The Architecture 383

8867D-7-08 8/16/00 11:23 AM Page 383

driver (SQLOLEDB) enlists the MSDE resource manager with the DTC in the
context of the current transaction. This auto-enlistment feature provided by
the data access layer simplifies code development and is fundamental to the
declarative programming model of COM+.

Each component participating in the transaction casts its vote by calling
IContextState::SetMyTransactionVote, a method that we have
already seen in action.

A transaction completes when the root object of the transaction is deac-
tivated. At this point, COM+ checks to see if all the objects have individually
given their consent to commit the transaction. Depending on the consensus, it
either calls ITransaction::Commit or ITransaction::Abort on the
current transaction.

The transactional objects themselves do not participate in the two-phase com-
mit process; only the enlisted RMs do. In fact, the transactional objects do not
even know about the commitment process, nor do they care.

A transaction also completes when it exceeds its timeout threshold.
Transactions are generally designed to be short-lived, as locking a resource
for an extended period of time can cause bottlenecks in the system. To ensure
efficient performance, COM+ defines a global timeout period for transac-
tions. The default is 60 seconds, but an administrator can change it to any
suitable value. COM+ also provides a configuration setting to override the
global timeout value for individual components.

If a transaction exceeds its timeout threshold, COM+ will deactivate all
the participating objects and abort the transaction.

COM+ 1.0 (the current release) uses a “serializable” level of isolation for
transactions. This level of isolation enforces highest level of locking on the
underlying resource, thereby providing the highest degree of data integrity. In
general, the higher the level of resource locking, the lower the scalability of
the application. Under COM+ 1.x (the future release) you will be able to con-
figure the isolation level on a per-component basis. The root object gets to dic-
tate the isolation level for the transaction. Be aware though, that a lower level
of isolation increases the chances of incorrect data.

Earlier, I said that, in order to commit a transaction, all the objects par-
ticipating in the transaction need to cast a positive vote. An obvious improve-

384 Chapter 8 • Transactions

8867D-7-08 8/16/00 11:23 AM Page 384

ment that can be made is that, instead of requiring all the participating objects
to cast a positive vote, it is sufficient that any one participating object casts a
negative vote. This in fact is the default behavior under COM+. The implica-
tion of this is that the developers of a transactional component need not call
SetMyTransactionVote(TxCommit) on successful operations. They just
need to indicate only the failure status (via TxAbort).

Lifetime of a Transaction

Consider the following base client VBScript code:

set TradeMgr = CreateObject("TradeMgmt.TradeMgr")
TradeMgr.BuyStocks "Don", "INTC", 100
TradeMgr.BuyStocks "Chris", "MSFT", 1000
TradeMgr = NULL

Recall that Chris does not have enough funds to buy 1000 shares of
MSFT; Don, however, does have enough funds to cover 100 shares of INTC.
However, if you execute the above code and check the values stored in the
database, you will find that even Don was unable to buy the shares he wanted.
What went wrong?

Recall that a transaction is considered complete only after the root
object of the transaction gets deactivated. In the above lines of code, the root
object gets deactivated after executing the two BuyStocks statements. As a
result, both BuyStocks statements are considered to be part of the same
transaction. When the second BuyStocks statement failed, all the changes,
including the one from the first BuyStocks statement, were rolled back.

An obvious solution is to release the root object after the first call to
BuyStocks and immediately recreate it before making the second call.

Though the proposed technique will work, releasing an object and
recreating it each time is very inefficient.

Fortunately, COM+ offers a better solution.

COM+ provides a way to deactivate an object even if the base client has not
released it. To make this possible, COM+ always returns a proxy pointer to the
base client, instead of returning the actual reference to the object. This provides
COM+ the flexibility to deactivate the actual object while keeping the proxy
alive. When the base client makes a method call on the proxy, COM+ can trans-
parently reactivate the object. This is referred to as just-in-time (JIT) activation.

JIT is covered in detail in Chapter 11 when we discuss scalability. The
important point to note here is that COM+ enforces a component that
requires a transaction to have JIT enabled.

The Architecture 385

8867D-7-08 8/16/00 11:23 AM Page 385

COM+ will automatically enforce JIT Activation to TRUE and Syn-
chronization as REQUIRED for any component marked as TRANSAC-
TION_REQUIRED or TRANSACTION_REQUIRES_NEW.

An object that is JIT-enabled contains a bit in its context called the
“done” bit or, more precisely, the deactivate-on-return bit. COM+ checks this
bit after its return from each method call. If the bit is turned on, COM+ will
deactivate the object. By default, COM+ turns this bit off before entering a
method. However, one can change this behavior at the interface method level
from the Component Services snap-in.

The deactivate-on-return bit can also be set programmatically by using
the method SetDeactivateOnReturn available on the interface ICon-
textState. The following is its prototype:

Interface IContextState : IUnknown
{

...
HRESULT SetDeactivateOnReturn(VARIANT_BOOL bVal);

}

Using this method, method CTradeMgr::BuyStocks can be revised
to deactivate the object on return, as shown in the following code fragment:

STDMETHODIMP CTradeMgr::BuyStocks(BSTR bsClient, BSTR bsSymbol,
long lShares)

{
CComPtr<IContextState> spState;
HRESULT hr = ::CoGetObjectContext(__uuidof(IContextState),

(void**) &spState);
if (FAILED(hr)) {

return hr;
}
hr = spState->SetDeactivateOnReturn(VARIANT_TRUE);
_ASSERT (SUCCEEDED(hr));

try {
//
// First operation - Obtain the stocks.
//
IStockMgrPtr spStockMgr(__uuidof(StockMgr));
long lAmount = spStockMgr->BuyStock(bsSymbol, lShares);

386 Chapter 8 • Transactions

8867D-7-08 8/16/00 11:23 AM Page 386

//
// Second operation - Debit the clien't account balance
//
IAccountMgrPtr spAccountMgr(__uuidof(AccountMgr));
spAccountMgr->Debit(bsClient, lAmount);

}catch(_com_error& e) {
spState->SetMyTransactionVote(TxAbort);
return Error(static_cast<LPCTSTR>(e.Description()),

GUID_NULL, e.Error());
}

spState->SetMyTransactionVote(TxCommit);
return S_OK;

}

With this change in place, if you execute the base client VBScript
code once again, you will see that this time Don’s trade would go through and
Chris’ trade would fail, just as expected.

Manual Transactions

Allowing COM+ to automatically manage a transaction simplifies compo-
nent development. However, there are times when the base client would like
to control the outcome of a transaction.

To handle this, COM+ provides a component called the Transaction-
Context class, represented by the PROGID TxCtx.TransactionObject.

The TransactionContext object supports interface ITransac-
tionContext. Following is its definition, along with a short explanation for
each interface method:

ITransactionContext : IDispatch
{

HRESULT CreateInstance([in] BSTR pszProgId,
[retval][out] VARIANT *pObject); // instantiate an object

HRESULT Commit(); // commit a transaction
HRESULT Abort(); // abort a transaction

};

By calling the methods on the ITransactionContext interface, the
base client can begin a transaction, compose the work of one or more COM+
components in the transaction, and explicitly commit or abort the transaction.
This is illustrated in the following VBScript code snippet:

The Architecture 387

8867D-7-08 8/16/00 11:23 AM Page 387

Dim txCtx
Set txCtx = CreateObject("TxCtx.TransactionContext")

Dim Accounts
set Accounts = txCtx.CreateInstance("AccountMgmt.AccountMgr")
Accounts.Debit "Don", 10

txCtx.Commit
msgbox "Done"

Note that an object that is activated by calling ITransactionCon-
text::CreateInstance should belong to a COM+ configured component.
Each activated object should cast its transaction vote using the context object.
However, using the transaction context, the base client also can participate in
the voting process.

Also notice the distinction between an object context and a transaction
context. An object context relates to an individual object whereas a transac-
tion context is related to the overall transaction.

COMPENSATING RESOURCE MANAGER

A resource manager has to pass the ACID test; it has to guarantee atomicity,
consistency, isolation, and durability. Given the intricate footwork an RM
has to perform, implementing an RM is not an easy task.

Let’s look at the tasks of a typical RM.

• When a client accesses a transactional resource, the corresponding RM
should support enlistment with the DTC. The RM may also make a
temporary copy of the resource and lock access to the actual resource
(so that no other client can use it).

• When the primary client attempts to modify the resource, the RM has to
record the change and apply the change to the copy (not the actual resource).

• If the DTC asks the RM to prepare, the RM has to play back the
recorded sequence, and create an internal state for the commit phase.
Alternatively, an RM may delay the playback to the commit phase, if it
is confident that the updates will not fail.

• If the DTC asks the RM to commit, the RM may use the prepared
internal state to commit the changes or play back the recorded
sequence and apply the changes to the resource.

• If the DTC asks the RM to abort, the RM may just discard the pre-
pared internal state (or the recorded sequence).

388 Chapter 8 • Transactions

8867D-7-08 8/16/00 11:23 AM Page 388

Given that a large portion of functionality is common from one RM to
another, a reasonable question to ask is if there is a way to share this func-
tionality. This would certainly simplify developing an RM.

It turns out that COM+ designers had already thought of this possibil-
ity. COM+ provides a framework to develop RMs. An RM developed using
this framework is referred to as a Compensating Resource Manager (CRM).

The developer of a CRM has to write two cooperating components
called the CRM worker and the CRM compensator.

The CRM worker exposes necessary COM objects to the clients. When
the client requests that the resource be modified, the worker simply records
the change (using CRM’s service).

The CRM compensator reads the recorded changes (supplied by the
CRM service) and either commits or aborts the changes.

Note that there is no direct communication between the CRM worker and
the CRM compensator. The only data that has to be passed from the worker to
the compensator is the sequence of changes applied on the resource.

To facilitate storing the sequence of changes, COM+ provides a compo-
nent called the CRM clerk. The CRM worker instantiates the CRM clerk and
starts recording the changes with the clerk. When the transaction closes,
COM+ launches the CRM compensator and calls prepare, commit, or abort
in whatever combination that is appropriate, and plays back the sequence of
records to the compensator.

The CRM clerk supports an interface, ICrmLogControl. The follow-
ing is its prototype:

ICrmLogControl : public IUnknown
{

[propget] HRESULT TransactionUOW([retval][out] BSTR *pVal);
HRESULT RegisterCompensator(

[in] LPCWSTR pwszProgId,
[in] LPCWSTR pwszDesc,
[in] LONG lCrmRegFlags);

HRESULT STDMETHODCALLTYPE WriteLogRecordVariants(
[in] VARIANT *pLogRecord);

HRESULT ForceLog();
HRESULT ForgetLogRecord();
HRESULT ForceTransactionToAbort();
HRESULT WriteLogRecord(

[size_is][in] BLOB rgBlob[],
[in] ULONG cBlob);

};

Compensating Resource Manager 389

8867D-7-08 8/16/00 11:23 AM Page 389

Method RegisterCompensator is used to associate a CRM worker
with a specific CRM compensator. It is the responsibility of the CRM worker
to call this method.

Parameter pwszProgId is the PROGID of the CRM compensator that
should be associated with the CRM worker. Parameter pwszDesc describes the
CRM compensator. A transaction-monitoring program can use this description
string for display purposes. Parameter lCrmRegFlags specifies the possible
phases (prepare, commit, or abort) that can be passed to the CRM compensator.
For example, if the compensator does not do anything specific to abort a transac-
tion, then CRMREGFLAG_ABORTPHASE need not be specified as a possible phase.

Method WriteLogRecord can be used to record a change that is being
made to the resource. The data is recorded in a form called BLOB (Binary
Large Object). A BLOB is a structure that can carry any opaque data as a
pointer. The structure of the BLOB is defined as follows:

struct BLOB{
ULONG cbSize; // the size of the data
[size_is(cbSize)] BYTE* pBlobData; //the actual data

};

The CRM worker can record a resource change by passing one or more
BLOBS to the method WriteLogRecord.

Each call to WriteLogRecord results in a single record stored with the
CRM clerk. When the transaction completes, the CRM clerk instantiates the
CRM compensator and plays back the records in the same sequence as they
were originally received.

Associating more than one BLOB with a single record is just a conve-
nience provided to the CRM worker. The CRM clerk internally pastes all the
BLOBS together as one big BLOB.

Method ForceTransactionToAbort can be used to abort a transaction.

Let’s turn our attention to the CRM compensator.

A CRM compensator has to support an interface, ICrmCompensator.
The following is its prototype:

ICrmCompensator : public IUnknown
{

HRESULT SetLogControl([in] ICrmLogControl *pLogControl);

// Prepare phase
HRESULT BeginPrepare(void);
HRESULT PrepareRecord([in] CrmLogRecordRead crmLogRec,

[retval][out] BOOL *pfForget);

390 Chapter 8 • Transactions

8867D-7-08 8/16/00 11:23 AM Page 390

HRESULT EndPrepare([retval][out] BOOL *pfOkToPrepare);

// Commit phase
HRESULT BeginCommit([in] BOOL fRecovery);
HRESULT CommitRecord([in] CrmLogRecordRead crmLogRec,

[retval][out] BOOL *pfForget);
HRESULT EndCommit(void);
// Abort phase
HRESULT BeginAbort([in] BOOL fRecovery);
HRESULT AbortRecord([in] CrmLogRecordRead crmLogRec,

[retval][out] BOOL *pfForget);
HRESULT EndAbort(void);

};

Data type CrmLogRecordRead is a C structure that contains a BLOB
(that was previously recorded using WriteLogRecord) and some other
fields that might be useful for debugging.

The compensator should implement code for all three phases, at least to
satisfy the compiler. The DTC enters a phase by calling the BeginXXX
method on that phase, followed by one or more calls to RecordXXX, and
completes the phase by calling the EndXXX method.

Once a record has been digested in any phase, if the CRM compensator feels
that the record serves no purpose to some other phase that it may enter later, it can
inform the CRM clerk to lose the record by setting pfForget flag to TRUE.

With this brief background, let’s build a CRM.

Our CRM will use a text file as a resource. To verify its functionality,
we will modify the account manager component from the previous simula-
tion program to use a text file, W:/DB/Accounts.txt, as a transactional
resource (replacing the MSDE database).

The CRM worker component will support interface IMyFileDB, as
defined here:

interface IMyFileDB : IDispatch
{

HRESULT Open([in] BSTR bsFilePath);
HRESULT GetBalance([in] BSTR bsClient,

[out, retval] long* plBalance);
HRESULT UpdateBalance([in] BSTR bsClient,

[in] long lNewBalance);
};

With this component in place, the CAccountMgr::Debit logic should
be modified to use the file-based resource. The revised implementation is
shown below:

Compensating Resource Manager 391

8867D-7-08 8/16/00 11:23 AM Page 391

STDMETHODIMP CAccountMgr::Debit(BSTR bsClient, long lAmount)
{

CComPtr<IContextState> spState;
HRESULT hr = ::CoGetObjectContext(__uuidof(IContextState),

(void**) &spState);
if (FAILED(hr)) {

return hr;
}

try {
IMyFileDBPtr spConn(__uuidof(MyFileDB));
spConn->Open("w:/DB/Accounts.txt");
long lCurrentBalance = spConn->GetBalance(bsClient);
if (lCurrentBalance < lAmount) {

spState->SetMyTransactionVote(TxAbort);
return Error(_T("Not enough balance"), GUID_NULL,

E_FAIL);
}
long lNewBalance = lCurrentBalance - lAmount;
spConn->UpdateBalance(bsClient, lNewBalance);

}
catch(_com_error& e) {

spState->SetMyTransactionVote(TxAbort);
return Error(static_cast<LPCTSTR>(e.Description()),

GUID_NULL, e.Error());
}

spState->SetMyTransactionVote(TxCommit);
return S_OK;

}

When IMyFileDB::Open is invoked, the CRM worker should first
instantiate the CRM clerk and register the associated CRM compensator. The
code snippet is shown below:

HRESULT CMyFileDB::InitCRM()
{

if (ISNOTNULL(m_spCrmLC)) {
m_spCrmLC = NULL;

}

HRESULT hr = ::CoCreateInstance(
__uuidof(CRMClerk),
NULL,
CLSCTX_INPROC_SERVER,
__uuidof(ICrmLogControl),
(void**) &m_spCrmLC);

392 Chapter 8 • Transactions

8867D-7-08 8/16/00 11:23 AM Page 392

if (FAILED(hr)) {
return hr;

}

// Register the compensator.
// Try 5 times if a recovery is in progress
for(int i=0; i<5; i++) {

hr = m_spCrmLC->RegisterCompensator(
L"TextFileDB.MyFileDBCompensator",
L"My file db compensator",
CRMREGFLAG_ALLPHASES);

if (SUCCEEDED(hr)) {
return S_OK;

}

// deal with recovery in progress
if (XACT_E_RECOVERYINPROGRESS == hr) {

Sleep(1000); // sleep for a second
continue; // and try again

}
}

m_spCrmLC = NULL;
return hr;

}

Note that it is possible for the CRM worker to receive an XACT_E_RECOV-
ERYINPROGRESS error during the call to RegisterCompensator. If this hap-
pens, the CRM worker should call the method a few more times until it succeeds.

The data file for our CRM contains clients and their respective bal-
ances. The CRM worker loads the file into memory as an STL map. Loading
all the data into memory is not always efficient. However, it works for our
demonstration.

typedef std::map<CComBSTR, long> MYACCOUNTDB;

class CMyFileDB :
...

{
...

private:
CComPtr<ICrmLogControl> m_spCrmLC;
MYACCOUNTDB m_AccountDB;

};

Compensating Resource Manager 393

8867D-7-08 8/16/00 11:23 AM Page 393

I have encapsulated serializing the MYACCOUNTDB data type to a file in
class CMyFile and will not discuss it further. The code can be found on the CD.

There are only two commands that the CRM worker needs to record:
the command to open a file and the command to update an account. As the
command to obtain the balance does not really change the resource, there is
no real need to record it.

To facilitate converting the command information into a BLOB, let’s
define some relevant data structures:

enum DBACTIONTYPE {dbOpen = 0x10, dbUpdate = 0x20};

#pragma warning(disable : 4200) // do not warn on
// zero-sized arrays

#pragma pack(1) // Pack the following
// structures tightly

struct DBACTION {
DBACTIONTYPE actionType;

};

struct DBACTIONOPEN : public DBACTION
{

DBACTIONOPEN()
{

actionType = dbOpen;
}
WCHAR pszFileName[0];

};

struct DBACTIONUPDATE : public DBACTION
{

DBACTIONUPDATE()
{

actionType = dbUpdate;
}
long lNewBalance;
WCHAR pszClient[0];

};

#pragma pack() // back to default packing
#pragma warning(default : 4200) // back to default warning

Note that packing the data on the byte boundary is important for rein-
terpreting a BLOB to its original structure.

394 Chapter 8 • Transactions

8867D-7-08 8/16/00 11:23 AM Page 394

Also note that I am defining a zero-sized array for a variable-sized
string. I am just taking advantage of the fact that data is stored contiguously
in a BLOB.

With these structures in place, the CMyFile::Open method can be
implemented as follows:

STDMETHODIMP CMyFileDB::Open(BSTR bsFilePath)
{

HRESULT hr = InitCRM();
if (FAILED(hr)) {

return hr;
}

// Open the file
USES_CONVERSION;
LPCTSTR pszFile = W2T(bsFilePath);
CMyFile file;
hr = file.Open(pszFile, CMyFile::READ);
if (FAILED(hr)) {

m_spCrmLC->ForceTransactionToAbort();
return hr;

}

// Log info with CRM that the file is being opened
DBACTIONOPEN openAction;

BLOB blobArray[2];
blobArray[0].pBlobData = (BYTE*) &openAction;
blobArray[0].cbSize = sizeof(DBACTIONOPEN);
blobArray[1].pBlobData = (BYTE*) bsFilePath;
blobArray[1].cbSize = ::SysStringByteLen(bsFilePath) +

sizeof(OLECHAR); // account for the end of string
hr = m_spCrmLC->WriteLogRecord(blobArray, 2);
if (FAILED(hr)) {

m_spCrmLC->ForceTransactionToAbort();
return hr;

}

// Now load file into memory
hr = file.Load(m_AccountDB);
if (FAILED(hr)) {

m_spCrmLC->ForceTransactionToAbort();
return hr;

}

return S_OK;
}

Compensating Resource Manager 395

8867D-7-08 8/16/00 11:23 AM Page 395

Method IMyFileDB::UpdateBalance records its operations simi-
larly. The code is not shown here.

Now let’s build the CRM compensator component.

The CRM component that we are building need not take any specific
action in the prepare or abort phase. Consequently, we will focus on just the
commit phase. Specifically, we will look at implementing two ICrmCompen-
sator methods—CommitRecord and EndCommit.

Method CommitRecord decodes the BLOB and, depending on the
action type, either loads the file into memory or updates the in-memory copy
with the new balances from the clients, as follows:

STDMETHODIMP CMyFileDBCompensator::CommitRecord(
/* [in] */ CrmLogRecordRead crmLogRec,
/* [retval][out] */ BOOL __RPC_FAR *pfForget)

{
*pfForget = FALSE; // don't drop the record
BLOB& blob = crmLogRec.blobUserData;
DBACTION* pAction =

reinterpret_cast<DBACTION*>(blob.pBlobData);
if (dbOpen == pAction->actionType) {

DBACTIONOPEN* pActionOpen =
reinterpret_cast<DBACTIONOPEN*>(pAction);

m_bsFilePath = pActionOpen->pszFileName;

// load the contents of the file
USES_CONVERSION;
CMyFile file;
HRESULT hr = file.Open(W2T(m_bsFilePath), CMyFile::READ);
if (FAILED(hr)) {

return hr;
}
hr = file.Load(m_AccountDB);
if (FAILED(hr)) {

return hr;
}
return S_OK;

}

if (dbUpdate == pAction->actionType) {
DBACTIONUPDATE* pActionUpdate =

reinterpret_cast<DBACTIONUPDATE*>(pAction);
long lNewBalance = pActionUpdate->lNewBalance;
LPWSTR pwszClient = pActionUpdate->pszClient;
MYACCOUNTDB::iterator i = m_AccountDB.find(pwszClient);

396 Chapter 8 • Transactions

8867D-7-08 8/16/00 11:23 AM Page 396

if (i == m_AccountDB.end()) {
return E_INVALIDARG;

}
(*i).second = lNewBalance;

return S_OK;
}

return S_OK;
}

Method EndCommit saves the in-memory copy back into the file, as
shown here:

STDMETHODIMP CMyFileDBCompensator::EndCommit(void)
{

// Save the information back to file
USES_CONVERSION;
CMyFile file;
HRESULT hr = file.Open(W2T(m_bsFilePath), CMyFile::WRITE);
if (FAILED(hr)) {

return hr;
}
file.Save(m_AccountDB);
return S_OK;

}

Congratulations! You have just finished building your first CRM.

The CRM components can be installed as a server application.1 It is
recommended that both the CRM worker and the CRM compensator for a
specific CRM be installed in the same application.

For CRM components it is important to turn the “Enable Compensating Resource
Managers” option on (from the Component Services snap-in). Otherwise, a call
to RegisterCompensator will result in a “catastrophic failure” error.

The CRM worker should be marked with the transaction setting as REQUIRED
(which will automatically force JIT Activation=TRUE and Synchroniza-
tion= REQUIRED). The CRM compensator, however, should be marked with the
transaction as disabled, the synchronization as disabled, and the JIT turned off.

Compensating Resource Manager 397

1 It can also be installed as a library application. Check the online documentation for more details.

8867D-7-08 8/16/00 11:23 AM Page 397

SUMMARY

In this chapter, we first looked at the issues involved while updating multiple
transactional resources.

To ensure system integrity, a transaction has to support four properties:
atomicity, consistency, isolation, and durability. Collectively, these proper-
ties are referred to as the ACID properties.

A resource manager (RM) is a software component that manages the
durable state of a specific type of transactional resource, such as a relational
database.

A distributed transaction coordinator (DTC) coordinates a transaction
across multiple machines over the network. Each RM involved in a transac-
tion is enlisted with the DTC. When the transaction completes, the DTC
informs the participating RMs to either commit the changes made to their
respective resources or to abort the changes. A transaction is committed using
a two-phase protocol.

COM+ simplifies developing components by automatically managing a
transaction. A COM+ component can indicate its interest in transactions by a
configurable attribute. When such an object is activated, COM+ sets its con-
text to deal with transactions. A participating object has to individually indi-
cate to COM+ if its operations succeeded or failed. If any participating object
indicates a failure condition, COM+ aborts the transaction. If all the partici-
pating objects vote positively, COM+ commits the transaction.

If a component is marked as requiring a transaction, COM+ automati-
cally enforces that the component is marked as JIT Activation=TRUE and
Synchronization=Required. By forcing JIT activation, a component can
achieve transactional correctness without sacrificing efficiency.

Finally, we looked at the infrastructure provided by COM+ to develop a
compensating resource manager.

REFERENCES

[Smi-99] Scott Smith, “Creating and Deploying Access Solutions with the Microsoft
Data Engine,” Microsoft Development Network Online, Microsoft Corp., Jan-
uary 1999. http://msdn.microsoft.com/library/techart/msdedeploy.htm

[Hen-99] Alyssa Henry, “Migrating from DAO to ADO Using ADO with the
Microsoft Jet Provider,” Microsoft Platform SDK, Microsoft Corp., March
1999. http://msdn.microsoft.com/library/techart/daotoadoupdate.htm

[Mar-00] Davide Marcato, “Create and Customize Transactions,” Visual C++ Devel-
opers Journal, January 2000.

398 Chapter 8 • Transactions

8867D-7-08 8/16/00 11:23 AM Page 398

[Gri-99] Richard Grimes, Professional Visual C++ 6 MTS Programming, ISBN 1-
861002-3-94, Wrox Press, 1999.

[Pin-98] Jonathan Pinnock, Professional DCOM Application Development, ISBN 1-
861001-31-2, Wrox Press, 1998.

References 399

8867D-7-08 8/16/00 11:23 AM Page 399

8867D-7-08 8/16/00 11:23 AM Page 400

