
Introduction
to the Java

Foundation
Classes

Topics in This Chapter

• The History of the Java Foundation Classes

• Overview of JFC Features

• The Swing Packages

• Look-and-Feel and the Model-View-Controller
Architecture

5

ChapterChapter 1
The Java Foundation Classes bring new capabilities to the Java programmer,

foremost among which are the components in the so-called Swing set. This
chapter begins by looking briefly at the history of the Java programming lan-

guage and of the Abstract Window Toolkit in particular. The Abstract Window Toolkit,
or AWT for short, provides the classes used to build an application’s user interface. In
both Java Development Kit (JDK) 1.0 and JDK 1.1, Java applications running under
Windows looked just like Windows programs, while those running on Solaris looked
the same as native applications written with the Motif toolkit. The reason for this was
simply that much of the AWT is provided by code from the native platform’s window-
ing system—the user interface components are rendered by Windows or by Motif, not
by Java code. While this has its advantages, it also has drawbacks. For one thing, it is
difficult to implement a single interface and map it to two (or more) host platforms
that work differently. And even when you’ve done that, the controls themselves
behave somewhat differently between the platforms. Because this behavior is part of
the native windowing system, there’s nothing you can do about it.

Implementing all of the user interface classes in Java gets rid of these problems at
a stroke. That’s exactly what the Swing components, which are the most significant
part of the Java Foundation Classes (JFC), do—they replace the native implementa-
tion with a user interface library that works the same on all Java platforms.

This chapter starts by looking at the history of the Swing project and then moves
on to look at the new architecture that was developed to implement the Swing con-
trols. The power of this architecture will be shown toward the end of the chapter,
when you’ll see how simple it is to change the way an application built with Swing
controls looks, without changing a single line of code.

What Are the Java Foundation Classes?

The Java Foundation Classes are a group of features whose implementation began
with JDK 1.1 and is continued in JDK 1.2, one of the most significant parts of which,
and the main concern of this book, is the Swing component set. The Swing compo-
nents are all graphical user interface controls that replace most of the platform-native
components provided by the JDK 1.0 and JDK 1.1 AWT. The best way to understand
what the Swing components are and how they will affect the development of Java
applications is to look at how the Swing project came about and at the problems with
the AWT that Swing is intended to address.

In the Beginning:The Abstract Window Toolkit
Sun Microsystems released JDK 1.0 in the first half of 1996. A significant part of
this new language was a package called java.awt , which contains the classes for
the AWT.

In its early days, Java was associated very closely with the Internet and, thanks to
its incorporation in Netscape’s popular Web browser, the sight of cool applets written
in Java became commonplace. A Web site without a Java applet of some kind soon
became hard to find. While dedicated surfers searched for the next exciting applet,
programmers were busy trying to meet user expectations using the facilities of the
AWT—for it is the AWT that provides the user interface that, when viewed through
a Web browser, becomes a Java applet.

Most of the original Java applets were of a similar, rather simple, type: moving
images, dancing text, showers of pixels and just about anything that caught the eye.
The aim was usually just to liven up an otherwise static Web page and attract as many
callers as possible, in the hope that at least some of them might look at and, better
still, buy the product or service that the Web site’s owner was offering. Creating such
simple applets did not really place much of a demand on the AWT. Most of the work
revolved around loading and displaying sequences of images or animating some sim-
ple text. More sophisticated applets allowed user interaction using the mouse or the
keyboard but, on the whole, the level of functionality required from the AWT by
these applets was very low.

Alongside the applet developers, others were trying to use Java to develop weight-
ier applications, such as office productivity tools and database client interfaces. While
the applet developer was very happy with his new-found freedom of expression and
got just about all he needed from the AWT, his colleagues were typically less
impressed. For serious development work, AWT 1.0 simply did not stand up to scru-
tiny. For one thing, it was slow.

While this is not such an issue on the Internet, it assumes great importance to a
user accustomed to applications written in C or C++ that usually (but with some
notable exceptions) don’t require you to wait a noticeable amount of time for some-

Chapter 1 Introduction to the Java Foundation Classes6

thing to happen after pressing a button. For another, the AWT simply wasn’t robust
enough—the implementation, particularly of the Windows version, was buggy and
required developers to spend inordinate amounts of time looking for solutions to
problems that weren’t in their own code and having to produce work-arounds to
patch up their applications and make them usable. Worst of all, though, the AWT did-
n’t provide much variety in its range of user interface elements.

User interfaces have come a long way since the days of DOS. These days, even
Unix has a windowing interface and only programmers and (some) system adminis-
trators still toil away at the shell prompt. Over the years, beginning with the intro-
duction of Windows 3.0 and continuing up to the present day, users have become
accustomed to interacting with applications using a mouse and a collection of famil-
iar controls such as buttons, scroll bars, text fields and so on. Each release of
Windows or the Motif toolkit brought new elements to the user’s attention, most of
which were quickly accepted and became indispensable.

Unfortunately, AWT 1.0 was not particularly sophisticated in its supply of visual
controls, so developers who wanted to make their Java spreadsheet or word proces-
sor resemble existing products had to start virtually from scratch and write their own
components.

Inevitably, this was a long and tiresome process, repeated in many companies
around the world. The end result, of course, was that there never were that many
serious Java applications developed with AWT 1.0 that made it to the marketplace,
even in Beta form. By the time the development community had come to terms with
creating their own components, JavaSoft had released JDK 1.1 and, along with it, ver-
sion 1.1 of the AWT.

By comparison to its predecessor, AWT 1.1 was a great improvement. The
Windows version was completely rewritten and was made much faster and more
robust. Better integration with the user’s desktop was provided and, for the first time,
a Java programmer could give an application access to a printer without needing to
write platform-dependent native code. The programming model was improved, too,
with a better mechanism for handling events from the user interface and, with the
introduction of the JavaBeans specification and its incorporation in JDK 1.1, it
became possible for developers to create components that could be taken and reused
elsewhere more easily and could even be incorporated into graphical application
builder tools such as Microsoft Visual Basic or Borland JBuilder. But still, there
remained the issue of user interface sophistication. Notwithstanding the breadth of
JDK 1.1 and the immense improvement in the quality of the AWT, only two new
components (a scrolling window and a pop-up menu) were added. Developers still
had to produce most of their own user interface controls.

Enter Netscape
Meanwhile developers at Netscape had begun development of a set of improved user
controls that were eventually released under the banner of the Internet Foundation

What Are the Java Foundation Classes? 7

Classes (IFC). Implemented on top of AWT 1.0, the IFC components were a more
complete set than their predecessors and included some nice features such as dialogs
to allow a user to choose colors, files and fonts visually, buttons with images, sliders,
bitmaps (images that load synchronously), support for animation sequences and an
improved application framework that supported the nesting of parts of an applica-
tion’s interface inside other parts, with drawn boundaries to emphasize the nesting
and grouping of components.

As well as providing improved functionality, the IFC components were different
from AWT in another way. Whereas the AWT components are implemented partly in
Java and partly as a platform-dependent native library, the IFC components are writ-
ten entirely in Java. As a result, the IFC is immediately portable to any platform that
supports Java and takes with it its look-and-feel, unlike the AWT, which adopts the
appearance of its host platform.

The Swing Set:A Joint Effort
In the early part of 1997, developers from Netscape and JavaSoft began cooperating
on a project that was dubbed Swing. The aim of this project was to bring together the
AWT and the best parts of Netscape’s IFC to produce a fully-featured, robust set of
user interface classes to be released as part of JDK 1.2. Like their IFC counterparts,
these components (referred to as the Swing component set) would be written entire-
ly in Java to ensure portability and would, at some future time, allow JavaSoft to drop
most of the peer model that the AWT had used for its first two releases. The peer
model allowed JavaSoft to leverage native platform user interface support to get the
first release of the JDK into the hands of developers very quickly. This approach had,
of course, been extremely successful but was also, in part, responsible for the bad
reputation of the AWT on the Windows platform.

The Swing project would soon grow far beyond a straight merge of the IFC com-
ponents into the AWT, however. JavaSoft launched a 100% Pure Java initiative, of
which the Swing component set was, of course, a very good example and the number
of components to be included in this set increased. The final result of this project
was, as you’ll see, a comprehensive new set of controls that matches the best of the
competition and puts Java applications on a par with those written using the native
platform libraries. Whereas the Java developer had been forced to limit the scope of
the user interface or implement custom components, now the problem is more the
wealth of choice available.

Swing Plus More:The Java Foundation Classes
The Swing components are, without doubt, the most notable part of what JavaSoft
named the Java Foundation Classes, but they are not the whole story. Several
improvements that had gone into AWT 1.1, plus a few more enhancements planned

Chapter 1 Introduction to the Java Foundation Classes8

for the JDK 1.2 time frame, were brought together and placed under the JFC ban-
ner. In total, the JFC set consists of the following pieces:

· The Swing components
· The Desktop Colors feature of JDK 1.1
· The JDK 1.1 Printing facility
· The Java2D API, which supports enhanced text, color and image

support
· Accessibility, which provides support for technologies that make it

easier for users with disabilities to use the Java platform
· The JDK 1.1 cut-and-paste and clipboard facility, combined with a

new drag-and-drop facility introduced in JDK 1.2.

The full range of JFC features is delivered as part of JDK 1.2, but JavaSoft also
provides a package, called JFC 1.1 (also known as Swing 1.0), that contains the Swing
components in a form suitable for use with JDK 1.1. This package allows developers
to make use of the Swing components without having to wait for the final release of
JDK 1.2. This book focuses on the parts of the Java Foundation Classes that are
found in both the add-on package and in JDK 1.2. In addition, it covers the JDK 1.1
printing facility and a host of other features from JDK 1.1 that are closely related to
the Swing components, all of which must be properly understood in order for you to
make full use of Swing. This subset of the full JFC family consists mainly of the first
three items just listed.

What Is the Relationship between JFC and AWT?
With the introduction of a new set of components that use a different software archi-
tecture from those already in the AWT, it is natural to wonder what will now become
of the AWT itself. As early as the last Beta version of JDK 1.1, JavaSoft were signal-
ing that there was a major change on the way for the AWT. In this last release before
final customer shipment, the AWT engineers introduced a new facility called
Lightweight Components. On the surface, this simply represented the ability to pro-
duce a component or a container with a transparent background. This was done by
allowing developers to directly extend the Component and Container classes and
a nice example of a button with rounded edges was provided in the release docu-
mentation. However, also among the documentation was a paper entitled AWT: The
Next Generation. This paper indicated that the future of the AWT lay in the direction
of lightweight components, enabling the removal of most of the troublesome peer
model. It also indicated that the peer model would be retained for a while for com-
patibility reasons. This paper, of course, was the first public announcement of the ini-
tiative that would eventually result in the delivery of the Swing components.

What Are the Java Foundation Classes? 9

In JFC 1.1 and JDK 1.2, the old AWT components and the Swing components are
both supported and the AWT components continue to use the peer model. It is not
clear how long this situation will continue. Some of the Swing components are actu-
ally derived from an AWT component—for example, the JFrame component, which
provides the top-level window for an application, is derived from the AWT Frame
class. However, every AWT component has a corresponding Swing component, so it
is already possible to implement an application that does not directly depend on the
AWT, apart from the top-level window.

Core Tip

Given the obvious desire on the part of JavaSoft to move away from the peer
model, developers would be well advised to upgrade existing applications as soon
as possible, to remove future dependence on the old AWT components.

Because the AWT infrastructure is still in place, applications written with the old
AWT continue to work in JFC 1.1 and with JDK 1.2 in the same way as those using
the JDK 1.0 event model continued to work in JDK 1.1. Because of the clean sepa-
ration of the two sets of components and the fact that they are all ultimately derived
from the Component class and share the same event model, it is possible to mix
AWT and Swing components in a single application. Of course, it is extremely unlike-
ly that anybody would develop a new application that relied on both sets of compo-
nents, but the ability to mix allows developers to migrate from the old set to the new
incrementally, retaining a working application throughout.

This feature is of enormous importance if you have spent great efforts developing
your own custom components based on the AWT classes. Most importantly, it means
you can continue to use them until you create Swing-based replacements. However,
because of the breadth of coverage of the Swing components, it is very likely that you
will be able to use them to directly replace a large proportion of your custom con-
trols, avoiding the need to carry out any porting at all.

Core Note

You will often see references in this book to AWT components and Swing com-
ponents as if they were mutually exclusive sets. Strictly speaking, this is not true,
because all of the Swing components are also AWT components.What we really
mean when we say AWT components is the set of components that the AWT
provided in JDK 1.1.

Chapter 1 Introduction to the Java Foundation Classes10

What Do I Need to Relearn to Use the Swing
Components?

The simple answer to this question is that you should be able to make basic use of
some Swing components straight away. Swing does not fundamentally change the
way in which Java applications are constructed. You still create a top-level window;
you still use frames, components and layout managers; and you still connect them
together in almost the same way as you always have (but see the discussion of
JFrame in Chapter 2, “ Frames, Labels, and Buttons,” for an important exception).
The main problem you have to overcome to use Swing proficiently is being aware of
all the possibilities available to you. Instead of the handful of AWT components, each
of which was very simple and required little customization, you now have a very large
and very rich set of possibilities to choose from. In addition to the wide choice, many
of the components are very highly customizable, especially if you are prepared to
spend time implementing some of the pluggable helper classes that can be attached
to some of them. The aim of this book is to help you to do that.

As an example, consider the new Swing Combo box. This control allows a user to
select from a list of possible values and shows the selected value in an input field. To
see the list of possibilities, you click on a small arrow near the input control to reveal
a drop-down list. If the programmer has made the Combo editable and the value you
want is not in the list, or if you know the value without needing to refer to the list, you
can type it directly into the input field. That’s the basic functionality of the control.

However, if you are prepared to do a little work, you can provide your own way of
rendering the contents of the drop-down box or of editing the input field. You don’t have
to restrict yourself any more to a traditional drop-down combo box containing a list of
strings. For one thing, without doing very much, you can add images to the strings.
Figure 1-1, for example, shows three combo boxes, one of which only uses images.

Figure 1-1 Swing combo boxes.

What Are the Java Foundation Classes? 11

With slightly more effort, you can present a hierarchical view of a file system from
which you could select a file to operate on. Or maybe you would prefer a drop-down
scientific calculator, or, in a financial institution, a way of choosing from a selection of
pricing information held on a server somewhere.

Overview of JFC Features

The JFC provides a very wide range of components and facilities. Before we start our
detailed investigation, we’ll spend a short time in this section looking briefly at the
various parts of the Java Foundation Class API that fall within the scope of this book.

The JComponent Class
The JComponent class is the common superclass of almost all of the new Swing
components. In the same way that Component provides common methods and
states for all AWT components, JComponent performs several major functions for
its own subclasses, several of which will be briefly described in the next few sections.
JComponent is derived from the AWT Container class, which is itself a subclass
of Component . Because JComponent extends Container , it is a lightweight
object. It does not have a window in the native windowing system like the AWT com-
ponents do and it can be transparent. The other advantage of extending Container
is that a JComponent can be constructed from many different components, because
it has built-in container functionality.

Core Note

It is important to understand the relationship between JComponent ,
Container and Component and between JComponent and all of the
other Swing classes. Appendix A contains a class hierarchy diagram that shows
every component in the Swing set. It’s a good idea to refer to this diagram as each
new component is introduced so that you can see where it fits in the overall picture.

JComponent enables the pluggable look-and-feel facility that will be discussed
later in this chapter, by redirecting calls that would otherwise be handled by
Component methods to a separate user interface object that is responsible for main-
taining the component’s appearance. For example, JComponent overrides the
paint method and redirects it to the user interface component instead of allowing
Component to process it. This issue is discussed further in “The
Model/View/Controller Architecture” below and in Chapter 13, “The Pluggable
Look-and-Feel.” Many other Swing features are also based on support provided by
the JComponent class.

Chapter 1 Introduction to the Java Foundation Classes12

Frames and Dialogs
In Swing, the top-level windows have changed. Instead of Frame, there is JFrame
and, similarly, there are JWindow and JDialog classes. The difference between
these Swing components and their AWT counterparts is much more than just a name
change. Whereas the AWT components were straightforward containers that were
special only because their native windowing system peers were top-level windows,
the Swing components have a complicated internal structure that is visible to the pro-
grammer and that allows them to be much more useful when constructing user
interfaces.

As an example of this, all of these containers can support a menu bar, a facility that
was previously only available with a Frame . In addition, the main working area can
be treated as if it had many independent layers. Placing components in different lay-
ers makes it possible to arrange for them to overlap, and also to ensure that some
components always appear in front of others. This facility can be used to great effect
to provide support for multiple document applications, which is covered in Chapter
12, “Multiple-Document Applications.”

The working area of a JFrame can be divided in two areas using the Swing
JSplitPane control. This component allows the user to drag a moving boundary
either horizontally or vertically to adjust the space available to two components
mounted on the frame. This control is useful when creating layouts like that of the
Microsoft Windows Explorer, or the network news interface provided by some Web
browsers, where the list of news groups and the list of items in the current news
group are displayed side-by-side with a slider that allows the space available to one
list to be increased at the expense of the other. JSplitPane is covered in Chapter
9, “Text Components,” where it is used to show two different views of a single
document.

Swing also provides a gamut of new support for dialogs, which were very hardly
catered for at all in JDK 1.1. The old FileDialog , which was very limiting and fell
far short of similar facilities on the native platform, has been replaced by the more
powerful JFileChooser , which can be used on its own or as part of a larger dia-
log. Other extended dialog support includes JColorChooser for graphically
selecting colors and a host of message, warning, error and information panes provid-
ed by the JOptionPane class.

One of the most impressive-looking Swing controls is the JTabbedPane , which
looks and behaves like a Windows property sheet. JTabbedPane is especially use-
ful in dialog boxes, where it allows the programmer to create panels of controls that
control related parts of an application’s configuration and present them in an unclut-
tered manner, separate from configuration information for other aspects of the appli-
cation, while still having all of a program’s configurable options available in one place.

The wide range of dialog components is discussed in Chapter 7, “Using Standard
Dialogs,” and Chapter 8, “Creating Custom Dialogs.”

Over view of JFC Features 13

Per-Component Borders
All of the Swing components provide for the drawing of a border around their edges.
Borders are managed by the following JComponent methods:

· public void setBorder(Border b);

· public Border getBorder();

Border is an interface, not a class, and the Swing set contains several standard
borders that should meet most requirements.

A border can be used to group together controls that are related to each other and
don’t need to be closely associated with other controls on the same panel. For exam-
ple, it might be appropriate to surround a group of radio buttons with a border that
contains some text to describe what the buttons control, as shown in Figure 1-2.
Alternatively, you can use the setBorder method to replace the border of a stan-
dard component, such as a text input field, with one of your own choice.

Figure 1-2 A Swing titled border grouping three radio buttons.

Borders are discussed in Chapter 4, “Graphics, Text Handling and Printing,” and
in Chapter 8.

Graphics Debugging
Often it can be difficult to see why complicated layouts or graphics are not being ren-
dered properly, because the entire process happens so quickly that it is impossible to
see exactly what is being done. Alternatively, you may find that sometimes your lay-
outs are being redrawn too frequently. In both of these cases, it would be useful to

Chapter 1 Introduction to the Java Foundation Classes14

have a way to either slow down the rendering process or to have a record of what was
done so that it can be inspected later for redundant operations. JFC 1.1 includes a
new Graphics Debugging facility that provides both of these features and
JComponent provides the interface to it via the getDebugGraphicsOptions
and setDebugGraphicsOptions methods. This feature is covered in detail in
Chapter 3, “Managing the User Interface.”

Enhanced Mouseless Operation
Swing provides an improved mechanism for allowing an application to be driven from
the keyboard as well as using a mouse. JDK 1.1 introduced keyboard accelerators for
menu items and a better mechanism for managing focus traversal using the Tab and
Shift-Tab keys. Swing extends this by allowing actions to be triggered by particu-
lar key sequences on arbitrary components on the user interface. This new mecha-
nism makes it almost trivial to support function keys and other types of hot keys that
were very difficult to implement with JDK 1.1. JComponent provides the reposi-
tory for the configuration information for this mechanism. The Swing components
also provide a more flexible focus management model, including the ability to install
a customized focus manager. Accelerator keys and focus management are discussed
in Chapter 5, “Keyboard Handling, Actions and Scrolling.”

Tooltips
A nice feature of some user interfaces is the ability to show a small help window or
tip when the mouse pauses over a button. Typically, this window would contain text
that describes what the button would do if it were pressed. Swing generalizes this
mechanism by making it available in all of the new components.

Simple applications can make use of the facility by supplying some text that will
display in the “tip” window, as shown in Figure 1-3, by invoking the JComponent
setToolTipText method. If you want to be a bit more clever, you can take con-
trol of this mechanism by providing your own component to be used instead of the
default window with text, or you can arrange for the text that is shown to be depen-
dent upon the position of the mouse relative to the control. We cover this mecha-
nism, and show how to exploit it to the full in Chapter 8.

Enhanced Scrolling
In JDK 1.1, some of the AWT components supplied scroll bars if the information that
they needed to display did not fit in the available screen space. Programmers could
also create their own scrolling components using the primitive Scrollbar or the
ScrollPane container, which handles most of the details of scrolling for the sim-
plest cases.

Over view of JFC Features 15

Figure 1-3 A tool tip.

By contrast, Swing components do not provide their own scroll bars—if, for exam-
ple, the text in a text area could turn out to be too large to be seen on the screen at
once, it is up to the programmer to provide the scrolling functionality. Fortunately,
the Swing component set provides a very simple to use but extremely powerful
scrolling container, JScrollPane , that fully replaces the AWT ScrollPane and
can be added to any Swing component with only one line of code.

When a component is wrapped with scroll bars, it is often useful to force a partic-
ular part of the scrolled area to become visible. As an example of this, consider the
case of a text control that provides a search facility. As the search progresses through
the text, it is necessary to scroll the content so that matched parts of the text are in
the visible region. JComponent provides a method that can be used to request that
a scrolling parent object change its viewport to make some part of the calling com-
ponent visible. Similarly, if the user drags an object over a scrolled list, JComponent
provides the means to make the list scroll automatically, without intervention by the
list itself, so that the position in which the user might want to drop the component
becomes visible. Compare this to dragging files between directories in the Windows
Explorer, for example. If the target directory in which the file is to be dropped is not
visible, dragging the file to the top or bottom of the window that is showing the direc-
tory tree causes that window to scroll in the appropriate direction. This mechanism
and the Swing scrolling controls are described in Chapter 5.

Pluggable Look-and-Feel
Without doubt one of the more interesting and novel features of the Swing architec-
ture is the fact that the applications it produces have a platform-independent look-

Chapter 1 Introduction to the Java Foundation Classes16

and-feel to them, because the user interface is rendered not by Windows or the Motif
library, but by Java code that will work the same way on every platform. As a result,
you can take an application developed using Swing components on Solaris, say, and
have it run with the same appearance on Windows 95. But that’s only half the story.

Unlike the old AWT, the parts of the Swing classes that deal with drawing compo-
nents onto the screen are not an inseparable part of each component. Instead, each
control delegates its screen drawing to a separate entity that knows how to draw com-
ponents of that type. For example, a button object allows a separate button-drawing
class to render its image onto the screen; the button itself would be concerned only
with delivering a notification to the application program that it has been pressed.

Once you have separated the rendering of components from the components
themselves, it becomes possible to substitute a different rendering class that draws
the button in a different way and what you can do for a button you can also do for
every other interface component. From this idea comes the concept of a family of
user interface classes that implement a consistent look-and-feel across all of the com-
ponents. The Swing components as supplied in JFC 1.1 and JDK 1.2 come with sev-
eral look-and-feel implementations, among them two that emulate the Windows and
Motif look-and-feel and a third that is a cross-platform look-and-feel specifically
designed for Java applications, called the Metal look-and-feel. All the user has to do
is plug the appropriate look-and-feel set into the application by configuring a default
for his or her platform. You’ll see more on this later in this chapter and in much
greater detail in Chapter 13.

Core Note

There are at least two other look-and-feel implementations available from JavaSoft
but not included in the standard Swing release. One of these is a Mac look-and-
feel that gives Apple Macintosh-like behavior to the application.The other is anoth-
er cross-platform look-and-feel called Organic, which was originally available in the
later developer prerelease versions of Swing under the name of the Java
look-and-feel.

Layout Managers
Swing adds two new layout managers to those provided by the AWT. BoxLayout is
a useful layout manager that arranges its components in either a single row or a sin-
gle column. As such, it is ideal for managing groups of buttons or other components
that have to remain properly aligned in one direction. It also provides the ability for
the programmer to specify how its components should move and resize when the
container is expanded, how much of the extra space should be used to let the com-
ponents grow and how much should be left empty. The OverlayLayout manager
can be used to arrange for components to overlap each other and to stay overlapped

Over view of JFC Features 17

as their container expands. OverlayLayout can be used in conjunction with trans-
parent, lightweight components to build up an interface from several layers, with
each layer being composed of a different component.

Because layout managers have generally been poorly documented and a proper
understanding of them can save a lot of time and effort when developing applications,
this book provides an extended description of the complete set of layout managers,
both the old AWT ones and the Swing ones, in Chapter 3.

Labels and Buttons
The AWT Label and Button classes were very simple and offered limited func-
tionality. By contrast, the Swing JLabel and JButton classes are highly customiz-
able. Labels and buttons can have both text and an image associated with them and
it is possible to choose the relative positions of these items and their overall alignment
in relation to the control itself. The Swing button classes are, in fact, a hierarchy that
includes the Swing menu items, traditional push buttons, toggle buttons that are
“sticky” (that is, they remain pressed in until pressed again), check boxes and radio
buttons. All of these types of buttons share the features of JButton , including the
ability to present an image. Among the possibilities that this opens up is the potential
to represent a check box or a radio box with an image more in keeping with the appli-
cation it is being used in than the default square box or the circled dot that are tra-
ditionally used. You’ll see all of this functionality, and more, in Chapter 2, “Frames,
Labels, and Buttons.”

Menus and Toolbars
The AWT menu system was very restricted and idiosyncratic. Menus were restricted
to frames, where they had to be placed directly under the caption bar and above the
useful working area. Furthermore, menus and menu items were not derived from the
Component class, which meant that they often couldn’t be treated in the same way
as the other components in an application. JDK 1.1 added a menu shortcut facility, but
even that was disappointing because it could be used with menu items, not menus.

By contrast, the Swing menus are all derived from JComponent and they are all
implemented entirely in Java. As a result, they behave predictably across all platforms
and they don’t exhibit any platform-specific peculiarities or limitations. AWT-style menu
shortcuts are supported on both menus and menu items and, in addition, it is possible
to attach mnemonics that allow a menu item to be activated with a single keystroke when
it is visible and hotkeys that activate the menu item even when it is not visible. Figure 1-4
shows a selection of menus and menu items, with mnemonics indicated by underlines.

Swing menus also have other features that are taken for granted elsewhere. For
example, you can add an image to the text on a menu item, or remove the text alto-
gether and let the image stand alone, or you can change the font and color of the text
or its background subject, of course, to constraints placed by the look-and-feel that

Chapter 1 Introduction to the Java Foundation Classes18

Figure 1-4 Swing menus and menu items.

the user has selected. For the benefit of the programmer, menus now post events as
they are posted and removed from the screen so that they can be created and
changed in a lazy manner, as they can in other windowing environments.

A relative of the menu bar is the Swing toolbar. The toolbar hosts a two-dimen-
sional arrangement of components, usually buttons with mnemonic images, that allow
very fast access to important features of the application. A typical toolbar is shown in
Figure 1-5. The toolbar will usually be located under an application’s menu bar but it
can be placed anywhere on the application’s window. Toolbars can also be configured
so that they can be completely detached from the window, to float in a separate frame
and can later be redocked with the frame under program or user control.

Menus and toolbars are discussed in Chapter 6, “Menus and Toolbars.”

Over view of JFC Features 19

Figure 1-5 The Swing Toolbar.

Text Controls
Swing provides lightweight replacements for the AWT TextField and TextArea
controls that provide all the functionality of their predecessors, including the ability
to detect and track changes to their content as they are made. The Swing components
are, however, built on a complex infrastructure that makes it possible to create more
complex text controls that can render text in multiple fonts and colors, possibilities
that the AWT does not offer. Swing includes the JTextPane control, which sup-
ports text in various styles and can intermix text with images and even AWT and
Swing components, to create documents with embedded functionality, and
JEditorPane , which can display documents encoded in many different input for-
mats, including HTML. Chapter 9 contains a detailed look at the Swing text compo-
nents and the underlying support that makes their powerful functionality possible.

Data Selection and Display Controls
One area in which Swing is much more complete than the AWT is its provision of
controls for selecting and displaying data. Where the AWT provided the List and
Choice controls, Swing has JList and JComboBox, which do everything that
their predecessors do and more. Both of these Swing controls can handle large
amounts of data easily, whereas on some platforms the AWT components do not cope
well with large lists. The Swing controls can also be customized to represent the data

Chapter 1 Introduction to the Java Foundation Classes20

they contain in various ways, including the use of images as well as or instead of text
and they can also hold selections that are not limited to the strings that the AWT com-
ponents require. These components are both described in Chapter 8.

Swing also has two data display controls that have no precedent in the AWT.
JTree is a very flexible control for displaying data organized in a hierarchical form.
As such, it can be used to display, for example, a graphical representation of a file sys-
tem or anything else with a similar structure. JTable is used to display data that is
organized in two-dimensional row and column form and therefore is a natural choice
for representing data returned from queries made to a database. Among the facilities
of JTable is the ability for the user to rearrange and resize the columns in the table.
Both JTable and JTree can be customized in various different ways and they can
both allow the user to edit the data being displayed.

Core Note

Both JTree and JComboBox merit chapters of their own (they are described
in Chapter 10,“The Tree Control,” and Chapter 11,“The Table Control,” respectively).

Timers
JDK 1.1 had no support for timers. If you needed one, the best you could do was

to create a separate thread that slept for the required time and then resumed to per-
form a delayed action or to post an event to another thread. Swing provides the
Timer class that allows you to create either a one-off timer that fires once and then
stops, or a repeating heartbeat timer. We look at timers and see an example of their
use in Chapter 8.

Support for Applets
You can use Swing classes in applets in the same way as you can use AWT classes. In
fact, there is very little that we will say about Swing in this book that doesn’t apply
equally to applications and applets. For this reason, you won’t find any applet-specif-
ic examples in this book—there simply is no need to make the distinction between
these two environments with Swing any more than there is with AWT. There are,
however, a couple of points to know about Swing and applets.

First, Swing applets must be based on the JApplet class instead of Applet .
JApplet is, in fact, a subclass of Applet . Secondly, JApplet has the same inter-
nal structures as the JFrame class that you’ll see in Chapter 2. This means that you
can have an applet with a layered display and even a menu bar if you want one. Of
course, the security restrictions that apply to applets in JDK 1.1 still apply when you
use Swing classes in applets, although there are changes in JDK 1.2 that make it pos-
sible to relax some of the restrictions under certain circumstances. This is not, how-
ever, a Swing issue.

Over view of JFC Features 21

The Swing Packages

The JFC 1.1 product is an add-on to JDK 1.1 that contains the Swing components in
a collection of packages, the names of which all start with com.sun.java.swing .
In JDK 1.2, the same packages exist, but the package name has been changed to
java.awt.swing . In the code shown in this book, the Swing packages are always
assumed to be at com.sun.java.swing , etc, which is appropriate for those using
JDK 1.1. However, all of the examples are included twice on the CD-ROM, so if you
intend to use JDK 1.2, you can install a suitable set of source and class files.

The reason for this duality is to allow applets and applications to be written using
the Swing components before the final release of JDK 1.2, or by those who don’t
want to (or can’t) move to JDK 1.2 immediately. The alternative was to place the new
components in the java.awt.swing package straight away and issue this as an
add-on to JDK 1.1, to be naturally superceded by JDK 1.2. However, for security rea-
sons, packages starting with java should not be downloadable to browsers. Since
this means it would not be possible for the owner of an applet to have the browser
download both the Swing-based applet and the Swing classes (in a JAR file), the only
alternative would be to require anybody who wanted to view a Swing-enabled applet
to obtain and install the java.awt.swing packages themselves. Obviously, this is
not an inviting prospect for applet writers, since a significant number of their poten-
tial customers would not be inclined to do this and therefore the applet’s impact
would be correspondingly reduced.

By issuing the Swing components in a package structure that is outside the core
Java hierarchy, it is possible to have the browser download the Swing JAR along with
the applet, or for the applet supplier to create a subset of the Swing JAR that con-
tains only the Swing facilities that the applet requires and have that downloaded to
minimize startup time.

Here are the packages that are common to JFC 1.1 and JDK 1.2, grouped by
functionality.

· com.sun.java.swing

· com.sun.java.swing.border

· com.sun.java.swing.event

· com.sun.java.swing.plaf

· com.sun.java.swing.plaf.basic

· com.sun.java.swing.plaf.metal

· com.sun.java.swing.plaf.motif

· com.sun.java.swing.plaf.multi

· com.sun.java.swing.plaf.windows

· com.sun.java.swing.preview

Chapter 1 Introduction to the Java Foundation Classes22

· com.sun.java.swing.table

· com.sun.java.swing.text

· com.sun.java.swing.text.html

· com.sun.java.swing.text.rtf

· com.sun.java.swing.tree

· com.sun.java.swing.undo

Core Note

The Swing release also contains a package called com.sun.java.acces-
sibility that provides support for Java Accessibility in the Swing components.
Although the Swing components in JFC 1.1 and JDK 1.2 do implement this support,
Accessibility is not covered in this book, so does not appear in this package list.

com.sun.java.swing and com.sun.java.swing.preview
This package contains the Swing components themselves and many of the interfaces
that they use. The classes and interfaces in this package follow a naming convention
that helps to identify what type of object they are. For example, the GUI components
themselves have names that begin with a J (although Box is an exception to this
rule, because it is not derived from JComponent); there is a Swing component to
replace every AWT component and usually you can deduce its name by just adding
the J prefix. A notable exception to this rule is Choice , which is replaced by JList ,
a Swing component that also supercedes the AWT List control.

Many GUI components and other classes are closely related to each other and
have much of their code in a shared base class; these shared classes all have names
that start with Abstract . Examples of this are AbstractButton , which is the
base class for all of the Swing buttons (and even for menu items) and
AbstractAction , which is a basic implementation of the Action interface that
will be introduced in Chapter 5. As their names suggest, these classes are all abstract.

Many Swing components are composed of several parts; a typical component is
made up of a class that represents the control itself (such as JButton), a class that
knows how to draw the component on the screen and another class that represents
the state of the component, known as the component’s model. The Swing package
contains several interfaces that define the methods that the model provides as well as
actual implementations of those interfaces that are used by real components.
Buttons, for instance, have a model that implements the ButtonModel interface.
The actual implementation of this model that all of the Swing buttons use is in a class
called DefaultButtonModel . This naming scheme, whereby a basic, but com-

The Swing Packages 23

plete, implementation of an interface is placed in a class whose name is that of the
interface with the added prefix Default , extends to the other model interfaces and
their implementations in the Swing package and is also used in some of the other
packages.

The Swing package also contains some classes that are used in the implementation
of new mechanisms that can be used with the components themselves. For example,
Swing introduces a more flexible focus management mechanism that allows much
finer tuning than the mechanism provided in JDK 1.1. The basic methods that make
up a Swing focus manager are contained in the abstract FocusManager class and
there is a complete implementation of a specific focus management policy in the class
DefaultFocusManager . Similarly, there are classes that support the new API for
managing keyboard accelerators and the pluggable look-and-feel mechanism that will
be described later in this chapter.

As the deadline for the first official Swing release approached, JavaSoft
moved some components from the Swing package into a preview package,
reflecting the fact that their API was not yet stable. This package is called
com.sun.java.swing.preview . If you are going to be making use of Swing
with JDK 1.1, bear in mind that the programming interface of the components in the
preview package is very likely to change. This could cause compatibility problems
if you plan to move to JDK 1.2 later.

com.sun.java.swing.table and com.sun.java.swing.tree
Swing provides two powerful components that allow you to present collections of
data in the form of a tree or a table. The classes for the components themselves,
JTree and JTable , reside with the other GUI components in the Swing package,
but both components are sufficiently complex that their data model classes and the
other helper classes that are required to make them useful are held in separate pack-
ages to avoid cluttering the Swing package and to make it easier to see what is avail-
able from JTree and JTable themselves. Like many of the Swing components,
these controls are highly configurable and, by replacing or extending the renderers
that draw parts of their screen representation, you can fundamentally change
they way these controls look. The renderer interfaces are held alongside the
tree and table support classes in the com.sun.java.swing.tree or
com.sun.java.swing.table package as appropriate, while the default imple-
mentations are look-and-feel specific and so reside in the look-and-feel packages.

The Text Packages
The Swing text components are much more complex than those in the AWT. While
you can regard the relatively simple JTextField and JTextArea controls as
straightforward replacements for TextField and TextArea , in implementation
terms they are very different. All of the text controls are derived from the base class

Chapter 1 Introduction to the Java Foundation Classes24

JTextComponent , which resides in the com.sun.java.swing.text package.
JTextComponent itself is only a generic wrapper for the large collection of class-
es that keep track of the content of a text control and how it should be rendered when
displayed, the classes that actually display the text and those that react to user input
from the keyboard or the mouse. All of these classes reside in the
com.sun.java.swing.text package.

The Swing package itself contains three other text components—
JPasswordField , JTextPane and JEditorPane , which all rely on support
from the classes in the text package. In addition to this, JEditorPane
can be configured to render text stored in various different forms, including
HTML and Rich Text Format (RTF), for which it uses classes in the
com.sun.java.swing.text.html and com.sun.java.swing.text.rtf
packages.

A common requirement in sophisticated text management applications, such as
word processors, is to be able to undo changes made to the text. The text components
are all implemented in such a way that changes made to the control’s data model are
recorded as transactions that can be reversed (in the right order) or re-applied after
being reversed (from the right initial state), so that it is possible to expose to the user
an undo/redo facility. The com.sun.java.swing.undo package contains classes
that work with the information provided by the text components to make it easier to
provide this support.

com.sun.java.swing.border
This package contains all of the standard borders that Swing provides, together with
the Border interface that borders must implement, and an abstract base class,
AbstractBorder , that forms the basis of all of the Swing borders and that can be
used to create new ones.

As you’ll see in Chapter 8, borders are not usually created directly. Instead, so that
border instances can be shared between components whenever possible, a new bor-
der is usually created by using the BorderFactory class, which arranges to satisfy
a request for a new border by returning an existing instance if it can be shared.
BorderFactory resides in the Swing package.

com.sun.java.swing.event
The Swing components bring with them many new events and event listener classes.
Just as the usual AWT events are all held in the java.awt.event package, the
Swing events and their listeners reside in com.sun.java.swing.event . Among
the new events are ChangeEvent , which reports an unspecified change of state in
its source (see the discussion of progress bars and sliders for example of this event)
and TreeModelEvent that is generated when the content of a tree’s data model
changes. While some of the events, such as ChangeEvent, extend the existing

The Swing Packages 25

AWTEvent that is the basis of the events in java.awt.event , the majority of
them, likeTreeModelEvent are not component-based and are therefore derived
directly from java.util.EventObject instead. This reflects the fact that most
of the events in this package represent things that happen inside a component or as
a result of some operation performed by the component on itself, possibly as an indi-
rect result of user interaction, rather than arising directly from actions at the user
interface. Changes to the tree’s data content can, for example, occur if the user is
allowed to edit the tree contents, but the source of the event is the tree’s data model
itself reporting that it has been changed rather than the tree component, which is just
the visual representation of the data.

com.sun.java.swing.plaf
As you already know, a major feature of the Swing components is their ability to be
rendered in different ways depending on the look-and-feel packages that are installed
on a particular system. This is made possible by placing all of the code that knows
how to draw the component in a separate class from the one that the application
interacts with, so that it can be changed at run time without affecting code in the
application that is holding references to the component objects themselves. In
order for this to work, there must be a well-defined interface between each
component type and the class that implements its look-and-feel. The
com.sun.java.swing.plaf contains all of these interfaces (plaf stands for
Pluggable Look-And-Feel).

All of the objects in this package are actually abstract classes that both
specify the actual look-and-feel interface and, in some cases, contain
prototypical implementations of some of it. All of them are derived from
com.sun.java.swing.plaf.ComponentUI , which represents the generic
interface (or minimum contract) between a component and its user interface class.
The amount of usable code in these classes that could form part of a real look-and-
feel class implementation varies from class to class.

This package also contains classes that wrap default values stored by look-and-feel
implementations that are used by the user interface classes. For example, many com-
ponents have several associated colors that are used to fill part of their screen repre-
sentation. The colors that a control uses will, of course, depend on the look-and-feel,
so they are stored separately by each look-and-feel. Instead of storing the colors as a
java.awt.Color object, however, the color is wrapped with an instance of
com.sun.java.swing.plaf.ColorUIResource and there are similar class-
es to wrap fonts and other resources. In Chapter 13, you’ll see why these wrapper
classes are used.

It is important to realize that this package does not contain any actual look-and-
feel implementation: it just stores the classes that define the interfaces that these
implementations use.

Chapter 1 Introduction to the Java Foundation Classes26

The Look-and-Feel Packages
Several packages provide the user interface classes for the look-and-feel
implementations supplied with Swing. All of these classes reside below
com.sun.java.swing.plaf . The com.sun.java.swing.plaf.motif pack-
age, for example, contains classes that know how to render all of the Swing com-
ponents and react to mouse, keyboard and focus changes in such a way as
to make the components look and feel as if they were part of a Motif desktop

application. Similarly, the com.sun.java.swing.plaf.windows package
provides the Windows 95 and Windows NT 4.0 look-and-feel, while the
com.sun.java.swing.plaf.metal package contains a custom look-and-feel
designed specifically by JavaSoft for Java applications that need to look the same on
all platforms.

The com.sun.java.swing.plaf.basic package does not provide a look-
and-feel implementation that the user can elect to use. Instead, it provides a set of
user interface classes, one for each Swing component, that can be used (by
programmers) either directly or as the basis for a more customized one in a real
look-and-feel package. For example, the user interface class for the JTree
component, com.sun.java.swing.plaf.basic.BasicTreeUI , is used as
the base class for the tree user interface for Windows (WindowsTreeUI in
the com.sun.java.swing.plaf.windows package), Motif (MotifTreeUI
in com.sun.java.swing.plaf.motif) and for the Metal look-and-feel
(MetalTreeUI in com.sun.java.swing.plaf.metal). You’ll see examples of the
available user interfaces and how they render various components later in this chap-
ter and throughout this book.

Core Alert

Sometimes, the only way to make a Swing component do exactly what you want it
to do is to make use of an interface that is look-and-feel specific.You’ll see several
examples where this is the case in this book. Strictly speaking, JavaSoft has not
finally frozen the interface between the Swing components and their look-and-feel
implementations, so if you plan on using this interface, be prepared to evolve your
software as you migrate to later releases of Swing. It is likely that these interfaces
will stabilize when the final release of JDK 1.2 appears.

com.sun.java.swing.plaf.multi
By default, a component only has a single user interface associated with it at
any time. However, by using the multiplexing look-and-feel provided by the
com.sun.java.swing.plaf.multi package, it is possible for more than one
user interface from any of the other look-and-feel packages, or from a custom pack-

The Swing Packages 27

age, to be connected to a single component at one time. This can be useful if, for
example, you want a text component to be able to draw its content on the screen and
also to be able to “read” that content through a sound card. This is particularly impor-
tant in an application that uses the Java Accessibility features to make itself more
usable by those with sight impairments, for example.

The implementation of the look-and-feel in this package is such that this require-
ment can be satisfied without any other look-and-feel package knowing that it is
being used in connection with another one to manage a single component.

The Model-View-Controller Architecture

The major difference between the Swing components and their AWT counterparts is
that the Swing controls are written entirely in Java and, as a result, do not depend on
any code provided by the host windowing system to provide their visual appearance
or their functionality. On its own, this change makes it possible to create controls that
look the same on any platform. However, the controls have not simply been re-
implemented in Java—they have, in fact, been completely redesigned using a para-
digm that is well-known in object-oriented programming, called the model-view-con-
troller architecture, or MVC for short.

To avoid getting lost in obscure and abstract discussions, let’s look at what the
MVC architecture means in terms of a concrete example and then show why this par-
ticular way of implementing components is so useful. At the end of the chapter, when
you’ve seen what has been done and why it has been done, you’ll find some examples
of the results, and you’ll be able to decide for yourself whether or not it was actually
worthwhile! If, after this, you’re sold on the idea of having a customized appearance
to your applications, or even to somebody else’s applications, in Chapter 13 you’ll see
in more detail how to go about implementing your own look-and-feel.

An MVC Component: a Button
To see what the MVC architecture is and how it relates to the Swing components,
let’s look at how you might go about designing a component that represents a but-
ton. A button is a control that has pieces that represent all three parts of the MVC
architecture and it is also simple and well-understood, so it should be easy to use it
to examine and assess a new component architecture.

Fundamentally, a button is an object that does little more than sit on a user interface
and wait for you to click it. When it has been clicked, it changes its appearance so that
it looks pushed-in, generates an event for some interested party to catch, then redraws
itself to look popped-out again. It couldn’t be much simpler in principle, but there is a
little more to it than this straightforward description would suggest. Before going any
further, read back over the first part of this paragraph. By and large, what I’ve told you
is what the button looks like while it is being used: it starts in a popped-up state, it

Chapter 1 Introduction to the Java Foundation Classes28

changes appearance so that it appears to be pushed in, and then it pops back out again.
These few words actually describe what the view part of a Swing component is sup-
posed to know about—how the component should look at any given time.

Core Note

Here and throughout the book you’ll find descriptions of components and how
they behave. Swing poses a particularly difficult problem for authors in that there
is no single way for a component to look or behave—exactly what it looks like or
what it does can depend crucially on the look-and-feel that is being used. In this
book, unless indicated otherwise, the descriptions match the way components look
and behave when the Metal look-and-feel is selected.

In this case, you can see that the button has two different representations that the
view has to be able to reproduce. In fact, though, there are more than that. Buttons
are not always in an active state: if you create a form with several fields that need to
be filled in, with an OKbutton to be pressed when the form is complete, it makes lit-
tle sense to offer the possibility for the user to be able to actually press it until all
mandatory fields have been completed. To implement this kind of functionality, the
button (along with other components) can be either enabled or disabled at any given
time. Naturally, the button will only respond to a click when it is enabled. Having a
software switch that records the state of the button is useful for the programmer, but
of no use to the user, who can’t see it, so to make it clear when the button can and
can’t be pressed, it is normal for the view to render it differently. Thus, there are
three different ways to draw a button (only three, because a pressed-in disabled but-
ton should not be possible!). More could be added to this, but for now it should be
clear that the view has to render the button differently depending on its state.

The state of the button is, of course, something that would be part of any compo-
nent that represented it. In fact, the button’s total state is the model part of the MVC
architecture. So far, you’ve seen two items that are legitimate parts of the model—
whether the button is pressed in and whether it is enabled. If you started looking
more closely at the problem, you would soon see that there are a few more attributes
that you would need to have; those attributes would all be held in the model.

You now know that the button holds its state in the model and that the view uses
the model to decide how to draw the button. The other important feature of the but-
ton is that its state can change—when you click on it with the mouse, or give it the
focus and press the space or return key, the button is activated. Obviously, something
must be monitoring the mouse and the keyboard and the fact that the button has
received or lost the focus, in order to notice that a state change is necessary. The part
of the component that receives and responds to input is the controller.

Let’s represent all of this with a diagram. Figure 1-6 shows a representation of the
various pieces of the button in the MVC architecture and it also shows how the state
of the various pieces can change. When the button is created, all three pieces come

The Model-View-Control ler Architecture 29

into existence and get connected together; you’ll see later how this is done. The
model adopts an initial state: Usually, the button isn’t pressed and in this case it will
start life enabled. When the button first becomes visible, the view uses the model’s
initial state to draw it in the appropriate way.

Figure 1-6 A button as an MVC component.

Now suppose that the user clicks the button with the mouse. This action is detected
by the controller, which interprets it as a request to click the button. A click actually
requires two steps—first, the button is pressed and then it is released. When the mouse
button is pressed, the controller tells the model to change its state to reflect the fact that
the button itself has been pressed. The button now needs to be redrawn so that it looks
pressed in. To make this happen, the model notifies the view that its state has changed,
by generating an event that the view has registered to receive. On receipt of this event,
the view queries the model for its new state and redraws the button accordingly.

When the user releases the mouse button, the controller detects it and changes
the model again so that the button’s state indicates that it is not pressed. This caus-
es the model to generate another event to the view, as a result of which the button
will be redrawn in its up state. This particular state change, from pressed to not
pressed also causes the model to generate another event that can be delivered to
application code to indicate that the button has been clicked. This is the only piece
of this interaction that is important to code outside the button: The rest has only
been visible inside the button.

Chapter 1 Introduction to the Java Foundation Classes30

Screen

(E)

(D)

(C)

(B)

(A) View

Application code

Mouse, focus
or keyboard

Model

Controller

Now suppose the button were disabled instead of enabled. What difference would
this have made? When the mouse is pressed over the button, the controller will still
detect it and will attempt to change the model’s state to reflect this. However, the fact
that the button is disabled is held within the model. When the model is disabled it
doesn’t allow the button’s pressed state to be changed, so no event will be generated
to the view and the button’s appearance won’t change. As far as the user is concerned,
the button press was ignored.

There is another way in which the button’s state can change: Code in the applica-
tion can change the enabled state of the button, or it can programmatically perform
a click as if the mouse had been pressed and then released. Disabling the button is
an action performed by the model and, of course, causes an event to the view, which
will make the button be redrawn with the usual “grayed-out” appearance. Similarly,
clicking the button is performed as a two-step interaction with the model in which a
mouse press and a mouse release are simulated, without going through the controller.
The model, of course, doesn’t know which piece of software is changing its state—be
it controller or application code, it still sends events to the view and, if necessary, gen-
erates the event for the button click.

The MVC Button Implementation in Swing
What has just been described is the purist approach to the MVC architecture in
which there are three pieces of software that separately implement the model, the
view and the controller and which get bound together when the button is created.
You have also seen that application code can directly change the model to click the
button or change its enabled state.
In practice, while this exact architecture is used for some components (for example
the text components that you’ll see in Chapter 9), many of the Swing controls are
built slightly differently. In these cases, the view and the controller are merged into
one entity that implements the functions of both. Also, applications usually don’t have
to interact directly with the model. Instead, the component itself often (but not
always) exposes methods that manipulate the model, so that the almost always deals
only with the component.

What do we mean by ‘the component’ here? Isn’t the whole thing the component?
In fact, the component is usually made up of several pieces; in the case of the button,
these are as follows:

1. An instance of a class that implements the model. In the case of an
ordinary button, this class is called DefaultButtonModel .

2. An instance of a class that knows how to draw the button that fulfills
the role of the view. A class called BasicButtonUI does this job for
ordinary buttons. As you’ll see in Chapter 13, the button’s border is
provided by yet another class, which we consider to be part of the
view for the purposes of this discussion.

The Model-View-Control ler Architecture 31

3. An instance of a class that responds to user input, in the role of con-
troller. For the button, this role is played by the
BasicButtonListener class.

4. A wrapper class that provides the programming interface to the but-
ton and hides the other pieces. The Swing class that represents a but-
ton is JButton .

Core Note

You can see that the button actually has separate view and controller classes.
Many other components do not.

In this case, when we speak of the “the component,” we would be referring to the
JButton instance, because this is what the application program would almost
always interact with. However, all of the Swing components that have a model pro-
vide a method that allows applications to access it directly if they need to. For some
controls, there is no way to change the model via the component—you have to go
directly to the model.

Using MVC to Enable the Pluggable Look-and-Feel
Architecture

The MVC architecture is the cornerstone of the pluggable look-and-feel feature in
Swing. If you wanted to take a button and make it look different and, perhaps, make
it respond to different keys or mouse events, you would need to modify the controller
and the view. You wouldn’t change the model, because you need the same button
states—after all, this is still a button, no matter how you draw it and you wouldn’t
want to change the programming interface to the wrapper component either because
if you did, you would make it difficult to substitute your button for an existing one.
So, if you wanted to be able to substitute one button look-and-feel for another easi-
ly, you would need to design your components in such a way that the view and con-
troller could be removed and replaced by another one without disturbing anything
else. This, of course, is one reason why the view and controller are often implement-
ed as a single unit.

Core Note

You can change the button’s model for another one if you want to, provided that it
implements the same interface as the default model.This is, however, an applica-
tion issue and is not strictly part of the pluggable look-and-feel architecture
because it does not affect the button’s appearance.

Chapter 1 Introduction to the Java Foundation Classes32

Plugging in new view-controller units means having a well-defined interface
between this part and the component itself and having an interface that tells
the component that the look-and-feel specific part is being changed. In fact,
the actual interface that is needed will depend on the type of component
because, as you can imagine, a tree control is vastly more complex than a
button. There is, however, a core set of methods that is required by every
pluggable unit. This core set is specified in Swing by the abstract class
com.sun.java.swing.plaf.ComponentUI . The suffix UI here is common
to all of the classes in com.sun.java.swing.plaf that specify an interface
between a particular component and its view-controller implementation. Other
examples are TreeUI, TableUI, LabelUI and so on. Each of these is an
abstract class that is derived from ComponentUI .

Core Note

In cases where the view and controller are separate, the view class, naturally
enough, is the one that has the UI suffix.

If you wanted to change the way a Swing component looks or behaves, you would
write a class that implemented all the methods in the corresponding UI class for that
type of component and arrange for it to be plugged in at run time. For example, to
create a new look-and-feel for a tree, you would have to implement a class that
provided all the methods of TreeUI . The Swing packages, as we know, contain
several look-and-feel packages. These packages all consist of a set of classes that
implement (or inherit) all of the methods of all of the UI classes in the
com.sun.java.swing.plaf directory.

The ComponentUI class has only a very small number of methods; every plug-
gable component module must, of course, provide all of them:

public abstract class ComponentUI() {
public static ComponentUI createUI(JComponent c);
public void installUI(JComponent c);
public void uninstallUI(JComponent c);
public void update(Graphics g, JComponent c);
public void paint(Graphics g, JComponent c);
public Dimension getPreferredSize(JComponent c);
public Dimension getMinimumSize(JComponent c);
public Dimension getMaximumSize(JComponent c);
public boolean contains(JComponent c, int x, int y);

}

The gory details of how the actual pluggable look-and-feel mechanism works are
not discussed in this chapter, because most of the time, you don’t really need to know
how the component is created in order to use it. These details are important only if

The Model-View-Control ler Architecture 33

you want to create a replacement look-and-feel, so we’ll confine ourselves to a basic
outline here. If you want to know more, you’ll find complete coverage in Chapter 13.

The first three methods deal with creating a UI object for a control and connect-
ing it to the component. When, for example, a button is created, the createUI
method of the button UI class for the look-and-feel that happens to be active is
called. This is a static method and its job is to return an object that can be plugged
into a JButton . If the Metal look-and-feel is selected, the createUI method of
MetalButtonUI will be called and it will return a new MetalButtonUI , which
will be installed into the JButton . To tell the new MetalButtonUI object that
this has happened and to let it know which component it is associated with, its
installUI method is called. As you can see, this method receives a reference to
the component into which the UI class is being installed as an argument.

It is possible to replace the UI after the component has been created. If this is
happening, the old UI class is disconnected from the component by calling its
uninstallUI method, then the installUI method of the replacement UI is
invoked. The job of creating UI classes for components, based on the currently
selected look-and-feel, is carried out by a class called UIManager that resides in the
com.sun.java.swing package.

The remaining methods are invoked when the component is in use and they deal
with things that only the look-and-feel class can know about. Clearly, drawing the
component is very look-and-feel specific, so most (but not all) of this is handled by
the UI class’s update and paint methods. Similarly, a component’s size can
depend on how it is being drawn, so the JComponent methods that determine how
big a component can be or wants to be do their job by calling the corresponding
method in the UI class. Finally, the contains method, as its name suggests, deter-
mines whether a given point is “inside” the component; if the drawn shape of the
component is irregular, deciding whether a point is inside or not cannot be done by
generic code—instead, the question is passed to the UI class, which knows how the
component is drawn.

Selecting the Look-and-Feel
When an application starts, its UIManager needs to know which of the available
look-and-feel classes to use. The user can determine the selected UI by editing the
file swing.properties . This file resides in the lib directory of the user’s Java
installation so that, for example, if the Java software has been installed in C:\java ,
this file will be called C:\java\lib\swing.properties .

The content of this file is a set of property = value lines, which will be
described in Chapter 13. The only line of interest here is the following one:

swing.defaultlaf = com.sun.java.swing.plaf.metal.MetalLookAndFeel

Chapter 1 Introduction to the Java Foundation Classes34

The swing.defaultlaf property must be set to the name of the class that pro-
vides the look-and-feel support. This example selects the Metal look-and-feel. To
select Motif, use this line:

swing.defaultlaf = com.sun.java.swing.plaf.motif.MotifLookAndFeel

and to use the Windows look-and-feel, you need this line:

swing.defaultlaf = com.sun.java.swing.plaf.windows.WindowsLookAndFeel

If swing.properties doesn’t exist, or it doesn’t contain a swing.default-
laf property, the cross-platform Metal look-and-feel will be used.

Core Note

If you are using JDK 1.2, these lines will, of course, need to be changed to look like
this:

swing.defaultlaf = java.awt.swing.plaf.metal.MetalLookAndFeel
swing.defaultlaf = java.awt.swing.plaf.motif.MotifLookAndFeel
swing.defaultlaf = java.awt.swing.plaf.windows.WindowsLookAndFeel

When you are running the examples in this book or developing your own pro-
grams, you’ll find it useful to switch between the various look-and-feel classes to see
how a program looks with the different styles installed. Chapter 13 shows you how to
give an application the ability to switch its look-and-feel on command, but, if you
aren’t using a program that can do that, the only way around it is to stop the program,
edit swing.properties and then start the application again. To save time, I keep
all three of the above lines in my file and comment out the two that I don’t want by
placing a “#” at the start of the line. Here’s what my file looks like when I want to run
an example with the Motif look-and-feel:

#swing.defaultlaf = com.sun.java.swing.plaf.metal.MetalLookAndFeel
swing.defaultlaf = com.sun.java.swing.plaf.motif.MotifLookAndFeel
#swing.defaultlaf = com.sun.java.swing.plaf.windows.WindowsLookAndFeel

One Application,Three Disguises
To conclude this chapter, let’s see how a typical Swing application’s appearance
changes when its look-and-feel is switched, by looking ahead to a program that will
be developed in Chapter 10. This program demonstrates the Swing tree component
by using it to display a view of a file system on a PC. The meaning of what you’re actu-
ally seeing here is not really important—what is important is the way in which the
tree’s content is presented. Look carefully at Figures 1-7, 1-8, and 1-9 and notice the
differences in the way that the trees are drawn. As you look at these figures,

The Model-View-Control ler Architecture 35

Figure 1-7 The Metal look-and-feel.

remember that the program was only written once and no code was changed between
these three screen shots.

Chapter 1 Introduction to the Java Foundation Classes36

Figure 1-8 The Motif look-and-feel.

The Model-View-Control ler Architecture 37

Figure 1-9 The Windows look-and-feel.

Chapter 1 Introduction to the Java Foundation Classes38

Summary

This chapter introduced the Java Foundation Classes and, in particular, the Swing
component set, which is the major new feature of JFC 1.1. It presented the history
of the JFC and described how the Swing components relate to their AWT
predecessors.

You also saw the major features of the Swing set and were introduced to the “core”
class, JComponent , which makes most of them possible. After a brief description of
the Swing packages, you were shown the architecture of the Swing components and
how this architecture makes it possible to change the appearance of a component or
of a complete application without changing any application code.

In the rest of this book, you’ll be introduced to all of the Swing components and
to many of the new facilities that Swing provides. The next chapter, however, covers
some basic ground by discussing the fundamentals of the AWT, and then introduces
two of the simpler Swing controls—JLabel and JButton .

Summar y 39

