

201

6

Interfaces and
Inner Classes

�

I

NTERFACES

�

O

BJECT

 C

LONING

�

I

NNER

 C

LASSES

�

P

ROXIES

Y

ou have now seen all the basic tools for object-oriented programming in Java. This
chapter shows you two advanced techniques that are very commonly used. Despite their
less obvious nature, you will need to master them to complete your Java tool chest.

The first, called an

interface,

is a way of describing

what

 classes should do, without specifying

how

 they should do it. A class can

implement

 one or more interfaces. You can then use objects
of these implementing classes anytime that conformance to the interface is required. After we
cover interfaces, we take up cloning an object (or deep copying, as it is sometimes called). A
clone of an object is a new object that has the same state as the original but a different identity.
In particular, you can modify the clone without affecting the original. Finally, we move on to
the mechanism of

inner classes.

Inner classes are technically somewhat complex—they are
defined inside other classes, and their methods can access the fields of the surrounding class.
Inner classes are useful when you design collections of cooperating classes. In particular,
inner classes are important to write concise, professional-looking code to handle graphical
user interface events.

This chapter concludes with a discussion of

proxies

, objects that implement arbitrary inter-
faces. A proxy is a very specialized construct that is useful for building system-level tools.
You can safely skip that section on first reading.

Interfaces

In the Java programming language, an interface is not a class but a set of

requirements

 for
classes that want to conform to the interface.

Prentice Hall PTR
This is a sample chapter of Core Java 2, Volume I: Fundamentals, Sixth Edition
ISBN: 0-13-047177-1

For the full text, visit http://www.phptr.com

©2002 Pearson Education. All Rights Reserved.

Core Java

202

Typically, the supplier of some service states: “If your class conforms to a particular inter-
face, then I’ll perform the service.” Let’s look at a concrete example. The

sort

 method of
the

Arrays

 class promises to sort an array of objects, but under one condition: The objects
must belong to classes that implement the

Comparable

 interface.

Here is what the

Comparable

 interface looks like:

public interface Comparable
{
 int compareTo(Object other);
}

This means that any class that implements the

Comparable

 interface is required to have a

compareTo

 method, and the method must take an

Object

 parameter and return an integer.

All methods of an interface are automatically

public

. For that reason, it is not necessary to
supply the keyword

public

 when declaring a method in an interface.

Of course, there is an additional requirement that the interface cannot spell out: When call-
ing

x.compareTo(y)

, the

compareTo

 method must actually be able to compare two objects
and return an indication whether

x

 or

y

 is larger. The method is supposed to return a nega-
tive number if

x

 is smaller than

y

, zero if they are equal, and a positive number otherwise.

This particular interface has a single method. Some interfaces have more than one method.
As you will see later, interfaces can also define constants. What is more important,
however, is what interfaces

cannot

 supply. Interfaces never have instance fields, and the
methods are never implemented in the interface. Supplying instance fields and method
implementations is the job of the classes that implement the interface. You can think of an
interface as being similar to an abstract class with no instance fields. However, there are
some differences between these two concepts—we will look at them later in some detail.

Now suppose we want to use the

sort

 method of the

Arrays

 class to sort an array of

Employee

 objects. Then the

Employee

 class must

implement

 the

Comparable

 interface.

To make a class implement an interface, you have to carry out two steps:

1. You declare that your class intends to implement the given interface.
2. You supply definitions for all methods in the interface.

To declare that a class implements an interface, use the

implements

 keyword:

class Employee

implements

 Comparable

Of course, now the

Employee

 class needs to supply the

compareTo

 method. Let’s suppose
that we want to compare employees by their salary. Here is a

compareTo

 method that
returns

−

1 if the first employee’s salary is less than the second employee’s salary, 0 if they
are equal, and 1 otherwise.

public int compareTo(Object otherObject)
{
 Employee other = (Employee)otherObject;
 if (salary < other.salary) return -1;
 if (salary > other.salary) return 1;
 return 0;
}

In the interface declaration, the

compareTo

 method was not declared

public

 because all
methods in an

interface

 are automatically public. However, when implementing the interface,
you must declare the method as

public

. Otherwise, the compiler assumes that the method
has package visibility—the default for a

class

. Then the compiler complains that you try to supply a

weaker access privilege.

203

6 • Interfaces and Inner Classes

The

compareTo

 method of the

Comparable

 interface returns an integer. If the objects are not
equal, it does not matter what negative or positive value you return. This flexibility can be useful
when comparing integer fields. For example, suppose each employee has a unique integer

id

,
and you want to sort by employee ID number. Then you can simply return

id - other.id

. That
value will be some negative value if the first ID number is less than the other, 0 if they are the same ID,
and some positive value otherwise. However, there is one caveat: The range of the integers must be
small enough that the subtraction does not overflow. If you know that the IDs are not negative or that
their absolute value is at most

(Integer.MAX_VALUE - 1) / 2

, you are safe.

Of course, the subtraction trick doesn’t work for floating-point numbers. The difference

salary -

other.salary

 can round to 0 if the salaries are close together but not identical.

Now you saw what a class must do to avail itself of the sorting service—it must implement a

compareTo

 method. That’s eminently reasonable. There needs to be some way for the

sort

method to compare objects. But why can’t the

Employee

 class simply provide a

compareTo

method without implementing the

Comparable

 interface?

The reason for interfaces is that the Java language is

strongly typed

. When making a method
call, the compiler needs to be able to check that the method actually exists. Somewhere in
the

sort

 method, there will be statements like this:

if (a[i].compareTo(a[j]) > 0)
{
 // rearrange a[i] and a[j]
 . . .
}

The compiler must know that

a[i]

 actually has a

compareTo

 method. If

a

 is an array of

Comparable

 objects, then the existence of the method is assured, because every class that
implements the

Comparable

 interface must supply the method.

You would expect that the

sort

 method in the

Arrays

 class is defined to accept a

Compara-
ble[]

 array, so that the compiler can complain if anyone ever calls

sort

 with an array whose
element type doesn’t implement the

Comparable

 interface. Sadly, that is not the case. Instead,
the

sort

 method accepts an

Object[]

 array and uses a clumsy cast:

// from the standard library--not recommended
if (((Comparable)a[i]).compareTo((Comparable)a[j]) > 0)
{
 // rearrange a[i] and a[j]
 . . .
}

If

a[i]

 does not belong to a class that implements the

Comparable

 interface, then the virtual
machine throws an exception. (Note that the second cast to

Comparable

 is not necessary because

the explicit parameter of the

compareTo

 method has type

Object, not Comparable.)

See Example 6–1 for the full code for sorting of an employee array.

Example 6–1: EmployeeSortTest.java

1. import java.util.*;
2.

3. public class EmployeeSortTest
4. { public static void main(String[] args)
5. { Employee[] staff = new Employee[3];
6.

7. staff[0] = new Employee("Harry Hacker", 35000);

Core Java

204

8. staff[1] = new Employee("Carl Cracker", 75000);
9. staff[2] = new Employee("Tony Tester", 38000);

10.

11. Arrays.sort(staff);
12.

13. // print out information about all Employee objects
14. for (int i = 0; i < staff.length; i++)
15. { Employee e = staff[i];
16. System.out.println("name=" + e.getName()
17. + ",salary=" + e.getSalary());
18. }
19. }
20. }
21.

22. class Employee implements Comparable
23. { public Employee(String n, double s)
24. { name = n;
25. salary = s;
26. }
27.

28. public String getName()
29. { return name;
30. }
31.

32. public double getSalary()
33. { return salary;
34. }
35.

36. public void raiseSalary(double byPercent)
37. { double raise = salary * byPercent / 100;
38. salary += raise;
39. }
40.

41. /**
42. Compares employees by salary
43. @param otherObject another Employee object
44. @return a negative value if this employee has a lower
45. salary than otherObject, 0 if the salaries are the same,
46. a positive value otherwise
47. */
48. public int compareTo(Object otherObject)
49. { Employee other = (Employee)otherObject;
50. if (salary < other.salary) return -1;
51. if (salary > other.salary) return 1;
52. return 0;
53. }
54.

55. private String name;
56. private double salary;

57. }

• int compareTo(Object otherObject)

compares this object with otherObject and returns a negative integer if this object is
less than otherObject, zero if they are equal, and a positive integer otherwise.

java.lang.Comparable 1.0

205
6 • Interfaces and Inner Classes

According to the language standard: “The implementor must ensure sgn(x.compareTo(y)) =
-sgn(y.compareTo(x)) for all x and y. (This implies that x.compareTo(y) must throw an
exception if y.compareTo(x) throws an exception.)” Here, “sgn” is the sign of a number:

sgn(n) is -1 if n is negative, 0 if n equals 0, and 1 if n is positive. In plain English, if you flip the parame-
ters of compareTo, the sign (but not necessarily the actual value) of the result must also flip. That’s not
a problem, but the implication about exceptions is tricky. Suppose Manager has its own comparison
method that compares two managers. It might start like this:

public int compareTo(Object otherObject)
{
 Manager other = (Manager)otherObject;
 . . .
}

That violates the “antisymmetry” rule. If x is an Employee and y is a Manager, then the call
x.compareTo(y) doesn’t throw an exception—it simply compares x and y as employees. But
the reverse, y.compareTo(x)throws a ClassCastException.

The same issue comes up when programming an equals method. However, in that case, you simply
test if the two classes are identical, and if they aren’t, you know that you should return false. How-
ever, if x and y aren’t of the same class, it is not clear whether x.compareTo(y) should return a neg-
ative or a positive value. Maybe managers think that they should compare larger than any employee,
no matter what the salary. But then they need to explicitly implement that check.

If you don’t trust the implementors of your subclasses to grasp this subtlety, you can declare
compareTo as a final method. Then the problem never arises because subclasses can’t supply
their own version. Conversely, if you implement a compareTo method of a subclass, you need to
provide a thorough test. Here is an example:

if (otherObject instanceof Manager)
{
 Manager other = (Manager)otherObject;
 . . .
}
else if (otherObject instanceof Employee)
{
 return 1; // managers are always better :-(
}
else
 return -((Comparable)otherObject).compareTo(this);

• static void sort(Object[] a)

sorts the elements in the array a, using a tuned mergesort algorithm. All elements in
the array must belong to classes that implement the Comparable interface, and they
must all be comparable to each other.

Properties of Interfaces
Interfaces are not classes. In particular, you can never use the new operator to instanti-
ate an interface:

x = new Comparable(. . .); // ERROR

However, even though you can’t construct interface objects, you can still declare
sinterface variables.

Comparable x; // OK

An interface variable must refer to an object of a class that implements the interface:
x = new Employee(. . .);
 // OK provided Employee implements Comparable

java.util.Arrays 1.2

Core Java

206

Next, just as you use instanceof to check if an object is of a specific class, you can use
instanceof to check if an object implements an interface:

if (anObject instanceof Comparable) { . . . }

Just as you can build hierarchies of classes, you can extend interfaces. This allows for mul-
tiple chains of interfaces that go from a greater degree of generality to a greater degree of
specialization. For example, suppose you had an interface called Moveable.

public interface Moveable
{
 void move(double x, double y);
}

Then, you could imagine an interface called Powered that extends it:
public interface Powered extends Moveable
{
 double milesPerGallon();
}

Although you cannot put instance fields or static methods in an interface, you can supply
constants in them. For example:

public interface Powered extends Moveable
{
 double milesPerGallon();
 double SPEED_LIMIT = 95; // a public static final constant
}

Just as methods in an interface are automatically public, fields are always
public static final.

It is legal to tag interface methods as public, and fields as public static final. Some
programmers do that, either out of habit or for greater clarity. However, the Java Language Speci-
fication recommends not to supply the redundant keywords, and we follow that recommendation.

Some interfaces define just constants and no methods. For example, the standard library
contains an interface SwingConstants that defines constants NORTH, SOUTH, HORIZONTAL,
and so on. Any class that chooses to implement the SwingConstants interface automati-
cally inherits these constants. Its methods can simply refer to NORTH rather than the more
cumbersome SwingConstants.NORTH.

While each class can only have one superclass, classes can implement multiple interfaces.
This gives you the maximum amount of flexibility in defining a class’s behavior. For exam-
ple, the Java programming language has an important interface built into it, called Clone-
able. (We will discuss this interface in detail in the next section.) If your class implements
Cloneable, the clone method in the Object class will make an exact copy of your class’s
objects. Suppose, therefore, you want cloneability and comparability. Then you simply
implement both interfaces.

class Employee implements Cloneable, Comparable

Use commas to separate the interfaces that describe the characteristics that you want
to supply.

Interfaces and Abstract Classes
If you read the section about abstract classes in Chapter 5, you may wonder why the
designers of the Java programming language bothered with introducing the concept of
interfaces. Why can’t Comparable simply be an abstract class:

abstract class Comparable // why not?
{

207
6 • Interfaces and Inner Classes

 public abstract int compareTo(Object other);
}

Then the Employee class would simply extend this abstract class and supply the
compareTo method:

class Employee extends Comparable // why not?
{
 public int compareTo(Object other) { . . . }
}

There is, unfortunately, a major problem with using an abstract base class to express a
generic property. A class can only extend a single class. Suppose that the Employee class
already extends a different class, say Person. Then it can’t extend a second class.

class Employee extends Person, Comparable // ERROR

But each class can implement as many interfaces as it likes:
class Employee extends Person implements Comparable // OK

Other programming languages, in particular C++, allow a class to have more than one
superclass. This feature is called multiple inheritance. The designers of Java chose not to sup-
port multiple inheritance because it makes the language either very complex (as in C++) or
less efficient (as in Eiffel).

Instead, interfaces give most of the benefits of multiple inheritance while avoiding the
complexities and inefficiencies.

C++ has multiple inheritance and all the complications that come with it, such as virtual base
classes, dominance rules, and transverse pointer casts. Few C++ programmers use multiple
inheritance, and some say it should never be used. Other programmers recommend using

multiple inheritance only for “mix-in” style inheritance. In the mix-in style, a primary base class
describes the parent object, and additional base classes (the so-called mix-ins) may supply auxiliary
characteristics. That style is similar to a Java class with a single base class and additional interfaces.
However, in C++, mix-ins can add default behavior, whereas Java interfaces cannot.

Microsoft has long been a proponent of using interfaces instead of using multiple inheritance. In
fact, the Java notion of an interface is essentially equivalent to how Microsoft’s COM technology
uses interfaces. As a result of this unlikely convergence of minds, it is easy to supply tools

based on the Java programming language to build COM objects (such as ActiveX controls). This is
done (pretty much transparently to the coder) in, for example, Microsoft’s J++ product and is also the
basis for Sun’s JavaBeans-to-ActiveX bridge.

Interfaces and Callbacks
A common pattern in programming is the callback pattern. In this pattern, you want to
specify the action that should occur whenever a particular event happens. For example,
you may want a particular action to occur when a button is clicked or a menu item is
selected. However, since you have not yet seen how to implement user interfaces, we will
consider a similar but simpler situation.

The javax.swing class contains a Timer class that is useful if you want to be notified
whenever a time interval has elapsed. For example, if a part of your program contains a
clock, then you can ask to be notified every second so that you can update the clock face.

When you construct a timer, you set the time interval, and you tell it what it should do
whenever the time interval has elapsed.

How do you tell the timer what it should do? In many programming languages, you
supply the name of a function that the timer should call periodically. However, the classes

Core Java

208
in the Java standard library take an object-oriented approach. You pass an object of some
class. The timer then calls one of the methods on that object. Passing an object is more
flexible than passing a function because the object can carry additional information.

Of course, the timer needs to know what method to call. The timer requires that you
specify an object of a class that implements the ActionListener interface of the
java.awt.event package. Here is that interface:

public interface ActionListener
{
 void actionPerformed(ActionEvent event);
}

The timer calls the actionPerformed method when the time interval has expired.

As you saw in Chapter 5, Java does have the equivalent of function pointers, namely, Method
objects. However, they are difficult to use, slower, and cannot be checked for type safety at
compile time. Whenever you would use a function pointer in C++, you should consider using

an interface in Java.

Suppose you want to print a message “At the tone, the time is . . .,” followed by a beep,
once every ten seconds. You need to define a class that implements the ActionListener
interface. Then place whatever statements you want to have executed inside the
actionPerformed method.

class TimePrinter implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 Date now = new Date();
 System.out.println("At the tone, the time is " + now);
 Toolkit.getDefaultToolkit().beep();
 }
}

Note the ActionEvent parameter of the actionPerformed method. This parameter gives
information about the event, such as the source object that generated it—see Chapter 8 for
more information. However, detail information about the event is not important in this
program, and you can safely ignore the parameter.

Next, you construct an object of this class and pass it to the Timer constructor.
ActionListener listener = new TimePrinter();
Timer t = new Timer(10000, listener);

The first parameter of the Timer constructor is the time interval that must elapse between
notifications, measured in milliseconds. We want to be notified every ten seconds. The
second parameter is the listener object.

Finally, you start the timer.
t.start();

Every ten seconds, a message like
At the tone, the time is Thu Apr 13 23:29:08 PDT 2000

is displayed, followed by a beep.

Example 6–2 puts the timer and its action listener to work. After the timer is started, the
program puts up a message dialog and waits for the user to click the Ok button to stop.
While the program waits for the user, the current time is displayed in ten second intervals.

Be patient when running the program. The “Quit program?” dialog box appears right
away, but the first timer message is displayed after ten seconds.

209
6 • Interfaces and Inner Classes

Note that the program imports the javax.swing.Timer class by name, in addition to importing
javax.swing.* and java.util.*. This breaks the ambiguity between javax.swing.Timer
and java.util.Timer, an unrelated class for scheduling background tasks.

Example 6–2: TimerTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import java.util.*;
4. import javax.swing.*;
5. import javax.swing.Timer;
6. // to resolve conflict with java.util.Timer
7.

8. public class TimerTest
9. {

10. public static void main(String[] args)
11. {
12. ActionListener listener = new TimePrinter();
13.

14. // construct a timer that calls the listener
15. // once every 10 seconds
16. Timer t = new Timer(10000, listener);
17. t.start();
18.

19. JOptionPane.showMessageDialog(null, "Quit program?");
20. System.exit(0);
21. }
22. }
23.

24. class TimePrinter implements ActionListener
25. {
26. public void actionPerformed(ActionEvent event)
27. {
28. Date now = new Date();
29. System.out.println("At the tone, the time is " + now);
30. Toolkit.getDefaultToolkit().beep();
31. }
32. }

• static void showMessageDialog(Component parent, Object message)

displays a dialog box with a message prompt and an Ok button. The dialog is
centered over the parent component. If parent is null, the dialog is centered on
the screen.

• Timer(int interval, ActionListener listener)

constructs a timer that notifies listener whenever interval milliseconds
have elapsed.

• void start()

starts the timer. Once started, the timer calls actionPerformed on its listeners.
• void stop()

stops the timer. Once stopped, the timer no longer calls actionPerformed on
its listeners

javax.swing.JOptionPane 1.2

javax.swing.Timer 1.2

Core Java

210

• static Toolkit getDefaultToolkit()

gets the default toolkit. A toolkit contains information about the graphical user
interface environment.

• void beep()

Emits a beep sound.

Object Cloning
When you make a copy of a variable, the original and the copy are references to the same
object. (See Figure 6–1.) This means a change to either variable also affects the other.

Figure 6–1: Copying and cloning

Employee original = new Employee(“John Public“, 50000);
Employee copy = original;
copy.raiseSalary(10); // oops--also changed original

javax.awt.Toolkit 1.0

Employee

Employee

Employeeoriginal =

copy =

original =

copy =

Copying

Cloning

211
6 • Interfaces and Inner Classes

If you would like copy to be a new object that begins its life being identical to original but
whose state can diverge over time, then you use the clone() method.

Employee copy = (Employee)original.clone();
 // must cast—clone returns an Object
copy.raiseSalary(10); // OK—-original unchanged

But it isn’t quite so simple. The clone method is a protected method of Object, which
means that your code cannot simply call it. Only the Employee class can clone Employee
objects. There is a reason for this restriction. Think about the way in which the Object class
can implement clone. It knows nothing about the object at all, so it can make only a
field-by-field copy. If all data fields in the object are numbers or other basic types, copying
the fields is just fine. But if the object contains references to subobjects, then copying the
field gives you another reference to the subobject, so the original and the cloned objects
still share some information.

To visualize that phenomenon, let’s consider the Employee class that was introduced in
Chapter 4. Figure 6–2 shows what happens when you use the clone method of the Object
class to clone such an Employee object. As you can see, the default cloning operation is
“shallow”—it doesn’t clone objects that are referenced inside other objects.

Figure 6–2: A shallow copy

Does it matter if the copy is shallow? It depends. If the subobject that is shared between the
original and the shallow clone is immutable, then the sharing is safe. This happens in two
situations. The subobject may belong to an immutable class, such as String. Alternatively,
the subobject may simply remain constant throughout the lifetime of the object, with no
mutators touching it and no methods yielding a reference to it.

Quite frequently, however, subobjects are mutable, and you must redefine the clone
method to make a deep copy that clones the subobjects as well. In our example, the hireDay
field is a Date, which is mutable.

For every class, you need to decide whether or not

1. The default clone method is good enough;

DateEmployee

Employeeoriginal =

name =

50000.0salary =

hireDay =

copy =

name =

50000.0salary =

hireDay =

String

Core Java

212

2. The default clone method can be patched up by calling clone on the mutable subobjects;
3. clone should not be attempted.

The third option is actually the default. To choose either the first or the second option, a
class must

1. Implement the Cloneable interface, and
2. Redefine the clone method with the public access modifier.

The clone method is declared protected in the Object class so that your code can’t simply
call anObject.clone(). But aren’t protected methods accessible from any subclass, and
isn’t every class a subclass of Object? Fortunately, the rules for protected access are more

subtle (see Chapter 5). A subclass can call a protected clone method only to clone its own objects.
You must redefine clone to be public to allow objects to be cloned by any method.

In this case, the appearance of the Cloneable interface has nothing to do with the normal use
of interfaces. In particular, it does not specify the clone method—that method is inherited
from the Object class. The interface merely serves as a tag, indicating that the class designer
understands the cloning process. Objects are so paranoid about cloning that they generate a
checked exception if an object requests cloning but does not implement that interface.

The Cloneable interface is one of a handful of tagging interfaces that Java provides.
Recall that the usual purpose of an interface such as Comparable is to ensure that a class
implements a particular method or set of methods. A tagging interface has no methods; its

only purpose is to allow the use of instanceof in a type inquiry:

if (obj instanceof Cloneable) . . .

Even if the default (shallow copy) implementation of clone is adequate, you still need to
implement the Cloneable interface, redefine clone to be public, call super.clone() and
catch the CloneNotSupportedException. Here is an example:

class Employee implements Cloneable
{
 public Object clone() // raise visibility level to public
 {
 try
 {
 return super.clone();
 }
 catch (CloneNotSupportedException e) { return null; }
 // this won’t happen, since we are Cloneable
 }

 . . .
}

The clone method of the Object class threatens to throw a CloneNotSupportedException—
it does that whenever clone is invoked on an object whose class does not implement the
Cloneable interface. Of course, the Employee class implements the Cloneable interface, so
the exception won’t be thrown. However, the compiler does not know that. Therefore, you still
need to catch the exception and return a dummy value.

The clone method that you just saw adds no functionality to the shallow copy provided by
Object.clone. It merely makes the method public. To make a deep copy, you have to work
harder and clone the mutable instance fields.

213
6 • Interfaces and Inner Classes

Here is an example of a clone method that creates a deep copy:
class Employee implements Cloneable
{
 . . .
 public Object clone()
 {
 try
 {
 // call Object.clone()
 Employee cloned = (Employee)super.clone();

// clone mutable fields
 cloned.hireDay = (Date)hireDay.clone()

 return cloned;
 }
 catch (CloneNotSupportedException e) { return null; }
 }
}

Users of your clone method still have to cast the result. The clone method always has return
type Object.

As you can see, cloning is a subtle business, and it makes sense that it is defined as pro-
tected in the Object class. (See Chapter 12 for an elegant method for cloning objects,
using the object serialization feature of Java.)

When you define a public clone method, you have lost a safety mechanism. Your clone
method is inherited by the subclasses, whether or not it makes sense for them. For example,
once you have defined the clone method for the Employee class, anyone can also clone

Manager objects. Can the Employee clone method do the job? It depends on the fields of the
Manager class. In our case, there is no problem because the bonus field has primitive type. But in
general, you need to make sure to check the clone method of any class that you extend.

The program in Example 6–3 clones an Employee object, then invokes two mutators. The
raiseSalary method changes the value of the salary field, while the setHireDay method
changes the state of the hireDay field. Neither mutation affects the original object because
clone has been defined to make a deep copy.

Example 6–3: CloneTest.java

1. import java.util.*;
2.

3. public class CloneTest
4. {
5. public static void main(String[] args)
6. {
7. Employee original = new Employee("John Q. Public", 50000);
8. original.setHireDay(2000, 1, 1);
9. Employee copy = (Employee)original.clone();

10. copy.raiseSalary(10);
11. copy.setHireDay(2002, 12, 31);
12. System.out.println("original=" + original);
13. System.out.println("copy=" + copy);
14. }

Core Java

214

15. }
16.

17. class Employee implements Cloneable
18. {
19. public Employee(String n, double s)
20. {
21. name = n;
22. salary = s;
23. }
24.

25. public Object clone()
26. {
27. try
28. {
29. // call Object.clone()
30. Employee cloned = (Employee)super.clone();
31.

32. // clone mutable fields
33. cloned.hireDay = (Date)hireDay.clone();
34.

35. return cloned;
36. }
37. catch (CloneNotSupportedException e) { return null; }
38. }
39.

40. /**
41. Set the pay day to a given date
42. @param year the year of the pay day
43. @param month the month of the pay day
44. @param day the day of the pay day
45. */
46. public void setHireDay(int year, int month, int day)
47. {
48. hireDay = new GregorianCalendar(year,
49. month - 1, day).getTime();
50. }
51.

52. public void raiseSalary(double byPercent)
53. {
54. double raise = salary * byPercent / 100;
55. salary += raise;
56. }
57.

58. public String toString()
59. {
60. return "Employee[name=" + name
61. + ",salary=" + salary
62. + ",hireDay=" + hireDay
63. + "]";
64. }
65.

66. private String name;
67. private double salary;
68. private Date hireDay;
69. }

215
6 • Interfaces and Inner Classes

Inner Classes
An inner class is a class that is defined inside another class. Why would you want to do
that? There are four reasons:

• An object of an inner class can access the implementation of the object that created it—
including data that would otherwise be private.

• Inner classes can be hidden from other classes in the same package.
• Anonymous inner classes are handy when you want to define callbacks on the fly.
• Inner classes are very convenient when you are writing event-driven programs.

You will soon see examples that demonstrate the first three benefits. (For more information
on the event model, please turn to Chapter 8.)

C++ has nested classes. A nested class is contained inside the scope of the enclosing class.
Here is a typical example: a linked list class defines a class to hold the links, and a class to
define an iterator position.

class LinkedList
{
public:
 class Iterator // a nested class
 {
 public:
 void insert(int x);
 int erase();
 . . .
 };
 . . .
private:
 class Link // a nested class
 {
 public:
 Link* next;
 int data;
 };
 . . .
};

The nesting is a relationship between classes, not objects. A LinkedList object does not have
subobjects of type Iterator or Link.

There are two benefits: name control and access control. Because the name Iterator is nested
inside the LinkedList class, it is externally known as LinkedList::Iterator and cannot conflict
with another class called Iterator. In Java, this benefit is not as important since Java packages give
the same kind of name control. Note that the Link class is in the private part of the LinkedList
class. It is completely hidden from all other code. For that reason, it is safe to make its data fields
public. They can be accessed by the methods of the LinkedList class (which has a legitimate need
to access them), and they are not visible elsewhere. In Java, this kind of control was not possible until
inner classes were introduced.

However, the Java inner classes have an additional feature that makes them richer and more useful
than nested classes in C++. An object that comes from an inner class has an implicit reference to the
outer class object that instantiated it. Through this pointer, it gains access to the total state of the outer
object. You will see the details of the Java mechanism later in this chapter.

Only static inner classes do not have this added pointer. They are the Java analog to nested classes
in C++.

Core Java

216

Using an Inner Class to Access Object State
The syntax for inner classes is somewhat complex. For that reason, we will use a simple but
somewhat artificial example to demonstrate the use of inner classes. We will write a pro-
gram in which a timer controls a bank account. The timer’s action listener object adds
interest to the account once per second. However, we don’t want to use public methods
(such as deposit or withdraw) to manipulate the bank balance because anyone could call
those public methods to modify the balance for other purposes. Instead, we will use an
inner class whose methods can manipulate the bank balance directly.

Here is the outline of the BankAccount class:
class BankAccount
{
 public BankAccount(double initialBalance) { . . . }
 public void start(double rate) { . . . }

 private double balance;

 private class InterestAdder implements ActionListener
 // an inner class
 {
 . . .
 }
}

Note the InterestAdder class that is located inside the BankAccount class. This does not
mean that every BankAccount has an InterestAdder instance field. Of course, we will
construct objects of the inner class, but those objects aren’t instance fields of the outer class.
Instead, they will be local to the methods of the outer class.

The InterestAdder class is a private inner class inside BankAccount. This is a safety mecha-
nism—since only BankAccount methods can generate InterestAdder objects, we don’t
have to worry about breaking encapsulation. Only inner classes can be private. Regular
classes always have either package or public visibility.

The InterestAdder class has a constructor which sets the interest rate that should be
applied at each step. Since this inner class implements the ActionListener interface,
it also has an actionPerformed method. That method actually increments the account
balance. Here is the inner class in more detail:

class BankAccount
{
 public BankAccount(double initialBalance)
 {
 balance = initialBalance;
 }
 . . .
 private double balance;

 private class InterestAdder implements ActionListener
 {
 public InterestAdder(double aRate)
 {
 rate = aRate;
 }

 public void actionPerformed(ActionEvent event) { . . . }

 private double rate;
 }
}

217
6 • Interfaces and Inner Classes

The start method of the BankAccount class constructs an InterestAdder object for the
given interest rate, makes it the action listener for a timer, and starts the timer.

public void start(double rate)
{
 ActionListener adder = new InterestAdder(rate);
 Timer t = new Timer(1000, adder);
 t.start();
}

As a result, the actionPerformed method of the InterestAdder class will be called once
per second. Now let’s look inside this method more closely:

public void actionPerformed(ActionEvent event)
{
 double interest = balance * rate / 100;
 balance += interest;

 NumberFormat formatter
 = NumberFormat.getCurrencyInstance();
 System.out.println("balance="
 + formatter.format(balance));
}

The name rate refers to the instance field of the InterestAdder class, which is not surpris-
ing. However, there is no balance field in the InterestAdder class. Instead, balance refers
to the field of the BankAccount object that created this InstanceAdder. This is quite inno-
vative. Traditionally, a method could refer to the data fields of the object invoking the
method. An inner class method gets to access both its own data fields and those of the outer
object creating it.

For this to work, of course, an object of an inner class always gets an implicit reference to
the object that created it. (See Figure 6–3.)

Figure 6–3: An inner class object has a reference to an outer class object

This reference is invisible in the definition of the inner class. However, to illuminate the
concept, let us call the reference to the outer object outer. Then, the actionPerformed
method is equivalent to the following:

public void actionPerformed(ActionEvent event)
{
 double interest = outer.balance * this.rate / 100;

// “outer” isn’t the actual name
 outer.balance += interest;

BankAccount

InterestAdder

10.0rate =

outer class
reference =

10000.0balance =

Core Java

218

 NumberFormat formatter
 = NumberFormat.getCurrencyInstance();
 System.out.println("balance="
 + formatter.format(outer.balance));

}

The outer class reference is set in the constructor. That is, the compiler adds a parameter to
the constructor, generating code like this:

public InterestAdder(BankAccount account, double aRate)
{

outer = account;
 // automatically generated code
 rate = aRate;
}

Again, please note, outer is not a Java keyword. We just use it to illustrate the mechanism
involved in an inner class.

When an InterestAdder object is constructed in the start method, the compiler passes
the this reference to the current bank account into the constructor:

ActionListener adder = new InterestAdder(this, rate);
 // automatically generated code

Example 6–4 shows the complete program that tests the inner class. Have another look at
the access control. The Timer object requires an object of some class that implements the
ActionListener interface. Had that class been a regular class, then it would have needed
to access the bank balance through a public method. As a consequence, the BankAccount
class would have to provide those methods to all classes, which it might have been reluc-
tant to do. Using an inner class is an improvement. The InterestAdder inner class is able
to access the bank balance, but no other class has the same privilege.

Example 6–4: InnerClassTest.java

1. import java.awt.event.*;
2. import java.text.*;
3. import javax.swing.*;
4.

5. public class InnerClassTest
6. {
7. public static void main(String[] args)
8. {
9. // construct a bank account with initial balance of $10,000

10. BankAccount account = new BankAccount(10000);
11. // start accumulating interest at 10%
12. account.start(10);
13.

14. // keep program running until user selects "Ok"
15. JOptionPane.showMessageDialog(null, "Quit program?");
16. System.exit(0);
17. }
18. }
19.

20. class BankAccount
21. {
22. /**
23. Constructs a bank account with an initial balance
24. @param initialBalance the initial balance
25. */

219
6 • Interfaces and Inner Classes

26. public BankAccount(double initialBalance)
27. {
28. balance = initialBalance;
29. }
30.

31. /**
32. Starts a simulation in which interest is added once per
33. second
34. @param rate the interest rate in percent
35. */
36. public void start(double rate)
37. {
38. ActionListener adder = new InterestAdder(rate);
39. Timer t = new Timer(1000, adder);
40. t.start();
41. }
42.

43. private double balance;
44.

45. /**
46. This class adds the interest to the bank account.
47. The actionPerformed method is called by the timer.
48. */
49. private class InterestAdder implements ActionListener
50. {
51. public InterestAdder(double aRate)
52. {
53. rate = aRate;
54. }
55.

56. public void actionPerformed(ActionEvent event)
57. {
58. // update interest
59. double interest = balance * rate / 100;
60. balance += interest;
61.

62. // print out current balance
63. NumberFormat formatter
64. = NumberFormat.getCurrencyInstance();
65. System.out.println("balance="
66. + formatter.format(balance));
67. }
68.

69. private double rate;
70. }
71. }

Special Syntax Rules for Inner Classes
In the preceding section, we explained the outer class reference of an inner class by calling
it outer. Actually, the proper syntax for the outer reference is a bit more complex. The
expression

OuterClass.this

denotes the outer class reference. For example, you can write the actionPerformed
method of the InterestAdder inner class as

public void actionPerformed(ActionEvent event)
{
 double interest = BankAccount.this.balance * this.rate / 100;

Core Java

220

 BankAccount.this.balance += interest;
 . . .
}

Conversely, you can write the inner object constructor more explicitly, using the syntax:
outerObject.new InnerClass(construction parameters)

For example,
ActionListener adder = this.new InterestAdder(rate);

Here, the outer class reference of the newly constructed InterestAdder object is set to the
this reference of the method that creates the inner class object. This is the most common
case. As always, the this. qualifier is redundant. However, it is also possible to set the outer
class reference to another object by explicitly naming it. For example, if InterestAdder was
a public inner class, you could construct an InterestAdder for any bank account:

BankAccount mySavings = new BankAccount(10000);
BankAccount.InterestAdder adder
 = mySavings.new InterestAdder(10);

Note that you refer to an inner class as
OuterClass.InnerClass

when it occurs outside the scope of the outer class. For example, if InterestAdder had
been a public class, you could have referred to it as BankAccount.InterestAdder else-
where in your program.

Are Inner Classes Useful? Are They Actually Necessary?
Are They Secure?
Inner classes are a major addition to the language. Java started out with the goal of being
simpler than C++. But inner classes are anything but simple. The syntax is complex. (It will
get more complex as we study anonymous inner classes later in this chapter.) It is not
obvious how inner classes interact with other features of the language, such as access
control and security.

Has Java started down the road to ruin that has afflicted so many other languages, by
adding a feature that was elegant and interesting rather than needed?

While we won’t try to answer this question completely, it is worth noting that inner classes
are a phenomenon of the compiler, not the virtual machine. Inner classes are translated into
regular class files with $ (dollar signs) delimiting outer and inner class names, and the
virtual machine does not have any special knowledge about them.

For example, the InterestAdder class inside the BankAccount class is translated to a
class file BankAccount$InterestAdder.class. To see this at work, try out the following
experiment: run the ReflectionTest program of Chapter 5, and give it the class
BankAccount$InterestAdder to reflect upon. You will get the following printout:

class BankAccount$InterestAdder
{
 public BankAccount$InterestAdder(BankAccount, double);

 public void actionPerformed(java.awt.event.ActionEvent);

 private double rate;
 private final BankAccount this$0;
}

221
6 • Interfaces and Inner Classes

If you use Unix, remember to escape the $ character if you supply the class name on the
command line. That is, run the ReflectionTest program as
java ReflectionTest ’BankAccount$InterestAdder’

You can plainly see that the compiler has generated an additional instance field, this$0,
for the reference to the outer class. (The name this$0 is synthesized by the compiler—you
cannot refer to it in your code.) You can also see the added parameter for the constructor.

If the compiler can do this transformation, couldn’t you simply program the same mecha-
nism by hand? Let’s try it. We would make InterestAdder a regular class, outside the
BankAccount class. When constructing an InterestAdder object, we pass it the this
reference of the object that is creating it.

class BankAccount
{ . . .

 public void start(double rate)
 {
 ActionListener adder = new InterestAdder(this, rate);
 Timer t = new Timer(1000, adder);
 t.start();
 }
}

class InterestAdder implements ActionListener
{
 public InterestAdder(BankAccount account, double aRate)
 {

 outer = account;
 rate = aRate;
 }
 . . .
 private BankAccount outer;
 private double rate;
 }

Now let us look at the actionPerformed method. It needs to access outer.balance.
public void actionPerformed(ActionEvent event)
{
 double interest = outer.balance * rate / 100; // ERROR
 outer.balance += interest; // ERROR
 . . .
}

Here we run into a problem. The inner class can access the private data of the outer class,
but our external InterestAdder class cannot.

Thus, inner classes are genuinely more powerful than regular classes, since they have more
access privileges.

You may well wonder how inner classes manage to acquire those added access privileges,
since inner classes are translated to regular classes with funny names—the virtual machine
knows nothing at all about them. To solve this mystery, let’s again use the ReflectionTest
program to spy on the BankAccount class:

class BankAccount
{

Core Java

222

 public BankAccount(double);

 static double access$000(BankAccount);
 public void start(double);
 static double access$018(BankAccount, double);

 private double balance;
}

Notice the static access$000 and access$018 methods that the compiler added to the
outer class. The inner class methods call those methods. For example, the statement

balance += interest

in the actionPerformed method of the InterestAdder class effectively makes the follow-
ing call:

access$018(outer, access$000(outer) + interest);

Is this a security risk? You bet it is. It is an easy matter for someone else to invoke the
access$000 method to read the private balance field or, even worse, to call the
access$018 method to set it. The Java language standard reserves $ characters in variable
and method names for system usage. However, for those hackers who are familiar with the
structure of class files, it is an easy (if tedious) matter to produce a class file with virtual
machine instructions to call that method. Of course, such a class file would need to be gen-
erated manually (for example, with a hex editor). Because the secret access methods have
package visibility, the attack code would need to be placed inside the same package as the
class under attack.

To summarize, if an inner class accesses a private data field, then it is possible to access that
data field through other classes that are added to the package of the outer class, but to do
so requires skill and determination. A programmer cannot accidentally obtain access but
must intentionally build or modify a class file for that purpose.

Local Inner Classes
If you look carefully at the code of the BankAccount example, you will find that you need
the name of the type InterestAdder only once: when you create an object of that type in
the start method.

When you have a situation like this, you can define the class locally in a single method.
public void start(double rate)
{
 class InterestAdder implements ActionListener
 {
 public InterestAdder(double aRate)
 {
 rate = aRate;
 }

 public void actionPerformed(ActionEvent event)
 {
 double interest = balance * rate / 100;
 balance += interest;

 NumberFormat formatter
 = NumberFormat.getCurrencyInstance();
 System.out.println("balance="
 + formatter.format(balance));
 }

223
6 • Interfaces and Inner Classes

 private double rate;
 }

 ActionListener adder = new InterestAdder(rate);
 Timer t = new Timer(1000, adder);
 t.start();
}

Local classes are never declared with an access specifier (that is, public or private). Their
scope is always restricted to the block in which they are declared.

Local classes have a great advantage—they are completely hidden from the outside
world—not even other code in the BankAccount class can access them. No method except
start has any knowledge of the InterestAdder class.

Local classes have another advantage over other inner classes. Not only can they access the
fields of their outer classes, they can even access local variables! However, those local vari-
ables must be declared final. Here is a typical example.

public void start(final double rate)
{
 class InterestAdder implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 double interest = balance * rate / 100;
 balance += interest;

 NumberFormat formatter
 = NumberFormat.getCurrencyInstance();
 System.out.println("balance="
 + formatter.format(balance));
 }
 }

 ActionListener adder = new InterestAdder();
 Timer t = new Timer(1000, adder);
 t.start();
}

Note that the InterestAdder class no longer needs to store a rate instance variable. It
simply refers to the parameter variable of the method that contains the class definition.

Maybe this should not be so surprising. The line
double interest = balance * rate / 100;

is, after all, ultimately inside the start method, so why shouldn’t it have access to the
value of the rate variable?

To see why there is a subtle issue here, let’s consider the flow of control more closely.

1. The start method is called.
2. The object variable adder is initialized via a call to the constructor of the inner class

InterestAdder.
3. The adder reference is passed to the Timer constructor, the timer is started, and the

start method exits. At this point, the rate parameter variable of the start method no
longer exists.

4. A second later, the actionPerformed method calls double interest = balance *
rate / 100;.

Core Java

224

For the code in the actionPerformed method to work, the InterestAdder class must
have made a copy of the rate field before it went away as a local variable of the start
method. That is indeed exactly what happens. In our example, the compiler synthesizes
the name BankAccount1InterestAdder for the local inner class. If you use the
ReflectionTest program again to spy on the BankAccount1InterestAdder class,
you get the following output:

class BankAccount1InterestAdder
{
 BankAccount1InterestAdder(BankAccount, double);

 public void actionPerformed(java.awt.event.ActionEvent);

 private final double val$rate;
 private final BankAccount this$0;
}

Note the extra double parameter to the constructor and the val$rate instance variable.
When an object is created, the value rate is passed into the constructor and stored in the
val$rate field. This sounds like an extraordinary amount of trouble for the implementors
of the compiler. The compiler must detect access of local variables, make matching data
fields for each one of them, and copy the local variables into the constructor so that the data
fields can be initialized as copies of them.

From the programmer’s point of view, however, local variable access is quite pleasant.
It makes your inner classes simpler by reducing the instance fields that you need to
program explicitly.

As we already mentioned, the methods of a local class can refer only to local variables that
are declared final. For that reason, the rate parameter was declared final in our example.
A local variable that is declared final cannot be modified. Thus, it is guaranteed that the
local variable and the copy that is made inside the local class always have the same value.

You have seen final variables used for constants, such as
public static final double SPEED_LIMIT = 55;

The final keyword can be applied to local variables, instance variables, and static variables.
In all cases it means the same thing: You can assign to this variable once after it has been created.
Afterwards, you cannot change the value—it is final.

However, you don’t have to initialize a final variable when you define it. For example, the final
parameter variable rate is initialized once after its creation, when the start method is called. (If the
method is called multiple times, each call has its own newly created rate parameter.) The val$rate
instance variable that you can see in the BankAccount1InterestAdder inner class is set once,
in the inner class constructor. A final variable that isn’t initialized when it is defined is often called a
blank final variable.

Anonymous inner classes

When using local inner classes, you can often go a step further. If you want to make only a
single object of this class, you don’t even need to give the class a name. Such a class is
called anonymous inner class.

public void start(final double rate)
{
 ActionListener adder = new
 ActionListener()
 {

225
6 • Interfaces and Inner Classes

 public void actionPerformed(ActionEvent event)
 {
 double interest = balance * rate / 100;
 balance += interest;

 NumberFormat formatter
 = NumberFormat.getCurrencyInstance();
 System.out.println("balance="
 + formatter.format(balance));
 }
 };
 Timer t = new Timer(1000, adder);
 t.start();
}

This is a very cryptic syntax indeed. What it means is:

Create a new object of a class that implements the ActionListener interface, where the
required method actionPerformed is the one defined inside the braces { }.

Any parameters used to construct the object are given inside the parentheses () following
the supertype name. In general, the syntax is

new SuperType(construction parameters)
{
 inner class methods and data
}

Here, SuperType can be an interface, such as ActionListener; then, the inner class imple-
ments that interface. Or, SuperType can be a class; then, the inner class extends that class.

An anonymous inner class cannot have constructors because the name of a constructor
must be the same as the name of a class, and the class has no name. Instead, the construc-
tion parameters are given to the superclass constructor. In particular, whenever an inner
class implements an interface, it cannot have any construction parameters. Nevertheless,
you must supply a set of parentheses as in:

new InterfaceType() { methods and data }

You have to look very carefully to see the difference between the construction of a new
object of a class and the construction of an object of an anonymous inner class extending
that class. If the closing parenthesis of the construction parameter list is followed by an
opening brace, then an anonymous inner class is being defined.

Person queen = new Person("Mary");
 // a Person object
Person count = new Person("Dracula") { ... };
 // an object of an inner class extending Person

Are anonymous inner classes a great idea or are they a great way of writing obfuscated
code? Probably a bit of both. When the code for an inner class is short, just a few lines of
simple code, then they can save typing time, but it is exactly timesaving features like this
that lead you down the slippery slope to “Obfuscated Java Code Contests.”

It is a shame that the designers of Java did not try to improve the syntax of anonymous
inner classes, since, generally, Java syntax is a great improvement over C++. The designers
of the inner class feature could have helped the human reader with a syntax such as:

Person count = new class extends Person("Dracula") { ... };
 // not the actual Java syntax

But they didn’t. Because many programmers find code with too many anonymous inner
classes hard to read, we recommend restraint when using them.

Core Java

226

Example 6–5 contains the complete source code for the bank account program with
an anonymous inner class. If you compare this program with Example 6–4, you will find
that in this case the solution with the anonymous inner class is quite a bit shorter, and,
hopefully, with a bit of practice, as easy to comprehend.

Example 6–5: AnonymousInnerClassTest.java

1. import java.awt.event.*;
2. import java.text.*;
3. import javax.swing.*;
4.

5. public class AnonymousInnerClassTest
6. {
7. public static void main(String[] args)
8. {
9. // construct a bank account with initial balance of $10,000

10. BankAccount account = new BankAccount(10000);
11. // start accumulating interest at 10%
12. account.start(10);
13.

14. // keep program running until user selects "Ok"
15. JOptionPane.showMessageDialog(null, "Quit program?");
16. System.exit(0);
17. }
18. }
19.

20. class BankAccount
21. {
22. /**
23. Constructs a bank account with an initial balance
24. @param initialBalance the initial balance
25. */
26. public BankAccount(double initialBalance)
27. {
28. balance = initialBalance;
29. }
30.

31. /**
32. Starts a simulation in which interest is added once per
33. second
34. @param rate the interest rate in percent
35. */
36. public void start(final double rate)
37. {
38. ActionListener adder = new
39. ActionListener()
40. {
41. public void actionPerformed(ActionEvent event)
42. {
43. // update interest
44. double interest = balance * rate / 100;
45. balance += interest;
46.

47. // print out current balance
48. NumberFormat formatter

227
6 • Interfaces and Inner Classes

49. = NumberFormat.getCurrencyInstance();
50. System.out.println("balance="
51. + formatter.format(balance));
52. }
53. };
54.
55. Timer t = new Timer(1000, adder);
56. t.start();
57. }
58.

59. private double balance;
60. }

Static Inner Classes
Occasionally, you want to use an inner class simply to hide one class inside another,
but you don’t need the inner class to have a reference to the outer class object. You can
suppress the generation of that reference by declaring the inner class static.

Here is a typical example of where you would want to do this. Consider the task of com-
puting the minimum and maximum value in an array. Of course, you write one function to
compute the minimum and another function to compute the maximum. When you call
both functions, then the array is traversed twice. It would be more efficient to traverse the
array only once, computing both the minimum and the maximum simultaneously.

double min = d[0];
double max = d[0];
for (int i = 1; i < d.length; i++)
{ if (min > d[i]) min = d[i];
 if (max < d[i]) max = d[i];
}

However, the function must return two numbers. We can achieve that by defining a class
Pair that holds two values:

class Pair
{ public Pair(double f, double s)
 { first = f;
 second = s;
 }
 public double getFirst()
 { return first;
 }
 public double getSecond()
 { return second;
 }

 private double first;
 private double second;
}

The minmax function can then return an object of type Pair.
class ArrayAlg
{ public static Pair minmax(double[] d)
 { . . .
 return new Pair(min, max);
 }

}

Core Java

228

The caller of the function then uses the getFirst and getSecond methods to retrieve
the answers:

Pair p = ArrayAlg.minmax(d);
System.out.println("min = " + p.getFirst());
System.out.println("max = " + p.getSecond());

Of course, the name Pair is an exceedingly common name, and in a large project, it is quite
possible that some other programmer had the same bright idea, except that the other pro-
grammer made a Pair class that contains a pair of strings. We can solve this potential name
clash by making Pair a public inner class inside ArrayAlg. Then the class will be known to
the public as ArrayAlg.Pair:

ArrayAlg.Pair p = ArrayAlg.minmax(d);

However, unlike the inner classes that we used in previous examples, we do not want to
have a reference to any other object inside a Pair object. That reference can be suppressed
by declaring the inner class static:

class ArrayAlg
{

public static class Pair
 {

 . . .
 }
 . . .
}

Of course, only inner classes can be declared static. A static inner class is exactly like any
other inner class, except that an object of a static inner class does not have a reference to the
outer class object that generated it. In our example, we must use a static inner class because
the inner class object is constructed inside a static method:

public static Pair minmax(double[] d)
{

. . .
 return new Pair(min, max);
}

Had the Pair class not been declared as static, the compiler would have complained that
there was no implicit object of type ArrayAlg available to initialize the inner class object.

You use a static inner class whenever the inner class does not need to access an outer class
object. Some programmers use the term nested class to describe static inner classes.

Example 6–6 contains the complete source code of the ArrayAlg class and the nested
Pair class.

Example 6–6: StaticInnerClassTest.java

1. public class StaticInnerClassTest
2. {
3. public static void main(String[] args)
4. {
5. double[] d = new double[20];
6. for (int i = 0; i < d.length; i++)
7. d[i] = 100 * Math.random();
8. ArrayAlg.Pair p = ArrayAlg.minmax(d);
9. System.out.println("min = " + p.getFirst());

10. System.out.println("max = " + p.getSecond());
11. }
12. }
13.

229
6 • Interfaces and Inner Classes

14. class ArrayAlg
15. {
16. /**
17. A pair of floating point numbers
18. */
19. public static class Pair
20. {
21. /**
22. Constructs a pair from two floating point numbers
23. @param f the first number
24. @param s the second number
25. */
26. public Pair(double f, double s)
27. {
28. first = f;
29. second = s;
30. }
31.

32. /**
33. Returns the first number of the pair
34. @return the first number
35. */
36. public double getFirst()
37. {
38. return first;
39. }
40.

41. /**
42. Returns the second number of the pair
43. @return the second number
44. */
45. public double getSecond()
46. {
47. return second;
48. }
49.

50. private double first;
51. private double second;
52. }
53.

54. /**
55. Computes both the minimum and the maximum of an array
56. @param a an array of floating point numbers
57. @return a pair whose first element is the minimum and whose
58. second element is the maximum
59. */
60. public static Pair minmax(double[] d)
61. {
62. if (d.length == 0) return new Pair(0, 0);
63. double min = d[0];
64. double max = d[0];
65. for (int i = 1; i < d.length; i++)
66. {
67. if (min > d[i]) min = d[i];
68. if (max < d[i]) max = d[i];
69. }

Core Java

230

70. return new Pair(min, max);
71. }
72. }

Proxies
In the final section of this chapter, we will discuss proxies, a new feature that became avail-
able with version 1.3 of the Java SDK. You use a proxy to create new classes at runtime that
implement a given set of interfaces. Proxies are only necessary when you don’t yet know at
compile time which interfaces you need to implement. This is not a common situation for
application programmers. However, for certain system programming applications the flex-
ibility that proxies offer can be very important. By using proxies, you can often avoid the
mechanical generation and compilation of “stub” code.

In versions 1.2 and below of the Java SDK, you encounter stub code in a number of situations.
When you use remote method invocation (RMI), a special utility called rmic produces stub
classes that you need to add to your program. (See Chapter 4 of Volume 2 for more information

on RMI.) And when you use the bean box, stub classes are produced and compiled on the fly when
you connect beans to each other. (See Chapter 7 of Volume 2 for more information on Java beans.)
It is expected that these mechanisms will be updated soon to take advantage of the proxy capability.

Suppose you have an array of Class objects representing interfaces (maybe only contain-
ing a single interface), whose exact nature you may not know at compile time. Now you
want to construct an object of a class that implements these interfaces. This is a difficult
problem. If a Class object represents an actual class, then you can simply use the newIn-
stance method or use reflection to find a constructor of that class. But you can’t instantiate
an interface. And you can’t define new classes in a running program.

To overcome this problem, some programs—such as the BeanBox in early versions of the
Bean Development Kit—generate code, place it into a file, invoke the compiler and then
load the resulting class file. Naturally, this is slow, and it also requires deployment of the
compiler together with the program. The proxy mechanism is a better solution. The proxy
class can create brand-new classes at runtime. Such a proxy class implements the interfaces
that you specify. In particular, the proxy class has the following methods:

• All methods required by the specified interfaces;
• All methods defined in the Object class (toString, equals, and so on).

However, you cannot define new code for these methods at runtime. Instead, you must
supply an invocation handler. An invocation handler is an object of any class that imple-
ments the InvocationHandler interface. That interface has a single method:

Object invoke(Object proxy, Method method, Object[] args)

Whenever a method is called on the proxy object, the invoke method of the invocation
handler gets called, with the Method object and parameters of the original call. The invoca-
tion handler must then figure out how to handle the call.

To create a proxy object, you use the newProxyInstance method of the Proxy class. The
method has three parameters:

1. A class loader. As part of the Java security model, it is possible to use different class
loaders for system classes, classes that are downloaded from the Internet, and so on.
We will discuss class loaders in Volume 2. For now, we will specify null to use the
default class loader.

2. An array of Class objects, one for each interface to be implemented.

231
6 • Interfaces and Inner Classes

3. An invocation handler.

There are two remaining questions. How do we define the handler? And what can we do
with the resulting proxy object? The answers depend, of course, on the problem that we
want to solve with the proxy mechanism. Proxies can be used for many purposes, such as:

• Routing method calls to remote servers;
• Associating user interface events with actions in a running program;
• Tracing method calls for debugging purposes.

In our example program, we will use proxies and invocation handlers to trace method
calls. We define a TraceHandler wrapper class that stores a wrapped object. Its invoke
method simply prints out the name and parameters of the method to be called, and then
calls the method with the wrapped object as the implicit parameter.

class TraceHandler implements InvocationHandler
{
 public TraceHandler(Object t)
 {
 target = t;
 }

 public Object invoke(Object proxy, Method m, Object[] args)
 throws Throwable
 {
 // print method name and parameters
 . . .
 // invoke actual method
 return m.invoke(target, args);
 }

 private Object target;
}

Here is how you construct a proxy object that causes the tracing behavior whenever one of
its methods is called.

Object value = . . .;
// construct wrapper
InvocationHandler handler = new TraceHandler(value);
// construct proxy for all interfaces
Class[] interfaces = value.getClass().getInterfaces();
Object proxy = Proxy.newProxyInstance(null, interfaces, handler);

 Now, whenever a method is called on proxy, the method name and parameters are printed
out, and then the method is invoked on value.

In the program shown in Example 6–7, we use proxy objects to trace a binary search. We fill
an array with proxies to the integers 1 . . . 1000. Then we invoke the binarySearch method
of the Arrays class to search for a random integer in the array. Finally, we print out the
matching element.

Object[] elements = new Object[1000];

// fill elements with proxies for the integers 1 ... 1000
for (int i = 0; i < elements.length; i++)
{
 Integer value = new Integer(i + 1);
 elements[i] = . . .; // proxy for value;
}

Core Java

232

// construct a random integer
Random generator = new Random();
int r = generator.nextInt(elements.length);
Integer key = new Integer(r + 1);

// search for the key
int result = Arrays.binarySearch(elements, key);

// print match if found
if (result >= 0)
 System.out.println(elements[result]);

The Integer class implements the Comparable interface. The proxy objects belong to a
class that is defined at runtime. (It has a name such as $Proxy0.) That class also implements
the Comparable interface. However, its compareTo method calls the invoke method of the
proxy object’s handler.

The binarySearch method makes calls like this:
if (elements[i].compareTo(key) < 0) . . .

Because we filled the array with proxy objects, the compareTo calls call the invoke method
of the TraceHandler class. That method prints out the method name and parameters and
then invokes compareTo on the wrapped Integer object.

Finally, at the end of the sample program, we call:
System.out.println(elements[result]);

The println method calls toString on the proxy object, and that call is also redirected to
the invocation handler.

Here is the complete trace of a program run:
500.compareTo(288)
250.compareTo(288)
375.compareTo(288)
312.compareTo(288)
281.compareTo(288)
296.compareTo(288)
288.compareTo(288)
288.toString()

You can see how the binary search algorithm homes in on the key, by cutting the search
interval in half in every step.

Example 6–7: ProxyTest.java

1. import java.lang.reflect.*;
2. import java.util.*;
3.

4. public class ProxyTest
5. {
6. public static void main(String[] args)
7. {
8. Object[] elements = new Object[1000];
9.

10. // fill elements with proxies for the integers 1 ... 1000
11. for (int i = 0; i < elements.length; i++)
12. {
13. Integer value = new Integer(i + 1);
14. Class[] interfaces = value.getClass().getInterfaces();
15. InvocationHandler handler = new TraceHandler(value);
16. Object proxy = Proxy.newProxyInstance(null,
17. interfaces, handler);
18. elements[i] = proxy;
19. }

233
6 • Interfaces and Inner Classes

20.

21. // construct a random integer
22. Random generator = new Random();
23. int r = generator.nextInt(elements.length);
24. Integer key = new Integer(r + 1);
25.

26. // search for the key
27. int result = Arrays.binarySearch(elements, key);
28.

29. // print match if found
30. if (result >= 0)
31. System.out.println(elements[result]);
32. }
33. }
34.

35. /**
36. An invocation handler that prints out the method name
37. and parameters, then invokes the original method
38. */
39. class TraceHandler implements InvocationHandler
40. {
41. /**
42. Constructs a TraceHandler
43. @param t the implicit parameter of the method call
44. */
45. public TraceHandler(Object t)
46. {
47. target = t;
48. }
49.

50. public Object invoke(Object proxy, Method m, Object[] args)
51. throws Throwable
52. {
53. // print implicit argument
54. System.out.print(target);
55. // print method name
56. System.out.print("." + m.getName() + "(");
57. // print explicit arguments
58. if (args != null)
59. {
60. for (int i = 0; i < args.length; i++)
61. {
62. System.out.print(args[i]);
63. if (i < args.length - 1)
64. System.out.print(", ");
65. }
66. }
67. System.out.println(")");
68.

69. // invoke actual method
70. return m.invoke(target, args);
71. }
72.

73. private Object target;
74. }

Properties of Proxy Classes
Now that you have seen proxy classes in action, we want to go over some of their properties.
Remember that proxy classes are created on the fly, in a running program. However, once
they are created, they are regular classes, just like any other classes in the virtual machine.

Core Java

234

All proxy classes extend the class Proxy. A proxy class has only one instance variable—the
invocation handler which is defined in the Proxy superclass. Any additional data that is
required to carry out the proxy objects’ tasks must be stored in the invocation handler. For
example, when we proxied Comparable objects in the program shown in Example 6–7, the
TraceHandler wrapped the actual objects.

All proxy classes override the toString, equals, and hashCode methods of the Object
class. Like all proxy methods, these methods simply call invoke on the invocation handler.
The other methods of the Object class (such as clone and getClass) are not redefined.

The names of proxy classes are not defined. The Proxy class in the Java 2 SDK generates
class names that begin with the string $Proxy.

There is only one proxy class for a particular class loader and ordered set of interfaces. That
is, if you call the newProxyInstance method twice with the same class loader and interface
array, then you get two objects of the same class. You can also obtain that class with the
getProxyClass method:

Class proxyClass = Proxy.getProxyClass(null, interfaces);

A proxy class is always public and final. If all interfaces that the proxy class implements
are public, then the proxy class does not belong to any particular package. Otherwise, all
non-public interfaces must belong to the same package, and then the proxy class also
belongs to that package.

You can test whether a particular Class object represents a proxy class, by calling the
isProxyClass method of the Proxy class.

This ends our final chapter on the fundamentals of the Java programming language. Inter-
faces and inner classes are concepts that you will encounter frequently. However, as we
already mentioned, proxies are an advanced technique that is of interest mainly to tool
builders, not application programmers. You are now ready to go on to learn about graphics
and user interfaces, starting with Chapter 7.

• Object invoke(Object proxy, Method method, Object[] args)

Define this method to contain the action that you want carried out whenever a
method was invoked on the proxy object.

• static Class getProxyClass(ClassLoader loader, Class[] interfaces)

Returns the proxy class that implements the given interfaces.
• static Object newProxyInstance(ClassLoader loader, Class[] interfaces,

InvocationHandler handler)

Constructs a new instance of the proxy class that implements the given interfaces. All
methods call the invoke method of the given handler object.

• static boolean isProxyClass(Class c)

Returns true if c is a proxy class.

java.lang.reflect.InvocationHandler 1.3

java.lang.reflect.Proxy 1.3

