
3

C H A P T E R

I. Tc
l Ba

sic
s

 1

Tcl Fundamentals 1

This chapter describes the basic syntax rules for the Tcl scripting language. It
describes the basic mechanisms used by the Tcl interpreter: substitution
and grouping. It touches lightly on the following Tcl commands: puts,
format, set, expr, string, while, incr, and proc.

Tcl is a string-based command lan-
guage. The language has only a few fundamental constructs and relatively little
syntax, which makes it easy to learn. The Tcl syntax is meant to be simple. Tcl is
designed to be a glue that assembles software building blocks into applications.
A simpler glue makes the job easier. In addition, Tcl is interpreted when the
application runs. The interpreter makes it easy to build and refine your applica-
tion in an interactive manner. A great way to learn Tcl is to try out commands
interactively. If you are not sure how to run Tcl on your system, see Chapter 2
for instructions for starting Tcl on UNIX, Windows, and Macintosh systems.

This chapter takes you through the basics of the Tcl language syntax. Even
if you are an expert programmer, it is worth taking the time to read these few
pages to make sure you understand the fundamentals of Tcl. The basic mecha-
nisms are all related to strings and string substitutions, so it is fairly easy to
visualize what is going on in the interpreter. The model is a little different from
some other programming languages with which you may already be familiar, so
it is worth making sure you understand the basic concepts.

Tcl Commands

Tcl stands for Tool Command Language. A command does something for you,
like output a string, compute a math expression, or display a widget on the
screen. Tcl casts everything into the mold of a command, even programming con-

4 Tcl Fundamentals Chap. 1

structs like variable assignment and procedure definition. Tcl adds a tiny
amount of syntax needed to properly invoke commands, and then it leaves all the
hard work up to the command implementation.

The basic syntax for a Tcl command is:
command arg1 arg2 arg3 ...

The command is either the name of a built-in command or a Tcl procedure.
White space (i.e., spaces or tabs) is used to separate the command name and its
arguments, and a newline (i.e., the end of line character) or semicolon is used to
terminate a command. Tcl does not interpret the arguments to the commands
except to perform grouping, which allows multiple words in one argument, and
substitution, which is used with programming variables and nested command
calls. The behavior of the Tcl command processor can be summarized in three
basic steps:

• Argument grouping.
• Value substitution of nested commands, variables, and backslash escapes.
• Command invocation. It is up to the command to interpret its arguments.

This model is described in detail in this Chapter.

Hello, World!

Example 1–1 The “Hello, World!” example.

puts stdout {Hello, World!}
=> Hello, World!

In this example, the command is puts, which takes two arguments: an I/O
stream identifier and a string. puts writes the string to the I/O stream along
with a trailing newline character. There are two points to emphasize:

• Arguments are interpreted by the command. In the example, stdout is used
to identify the standard output stream. The use of stdout as a name is a
convention employed by puts and the other I/O commands. Also, stderr is
used to identify the standard error output, and stdin is used to identify the
standard input. Chapter 9 describes how to open other files for I/O.

• Curly braces are used to group words together into a single argument. The
puts command receives Hello, World! as its second argument.

The braces are not part of the value.
The braces are syntax for the interpreter, and they get stripped off before

the value is passed to the command. Braces group all characters, including new-
lines and nested braces, until a matching brace is found. Tcl also uses double
quotes for grouping. Grouping arguments will be described in more detail later.

Variables 5 I. Tc
l Ba

sic
s

Variables

The set command is used to assign a value to a variable. It takes two arguments:
The first is the name of the variable, and the second is the value. Variable names
can be any length, and case is significant. In fact, you can use any character in a
variable name.

It is not necessary to declare Tcl variables before you use them.
The interpreter will create the variable when it is first assigned a value.

The value of a variable is obtained later with the dollar-sign syntax, illustrated
in Example 1–2:

Example 1–2 Tcl variables.

set var 5
=> 5
set b $var
=> 5

The second set command assigns to variable b the value of variable var.
The use of the dollar sign is our first example of substitution. You can imagine
that the second set command gets rewritten by substituting the value of var for
$var to obtain a new command.

set b 5

The actual implementation of substitution is more efficient, which is important
when the value is large.

Command Substitution

The second form of substitution is command substitution. A nested command is
delimited by square brackets, []. The Tcl interpreter takes everything between
the brackets and evaluates it as a command. It rewrites the outer command by
replacing the square brackets and everything between them with the result of
the nested command. This is similar to the use of backquotes in other shells,
except that it has the additional advantage of supporting arbitrary nesting of
commands.

Example 1–3 Command substitution.

set len [string length foobar]
=> 6

In Example 1–3, the nested command is:
string length foobar

This command returns the length of the string foobar. The string com-
mand is described in detail starting on page 49. The nested command runs first.

6 Tcl Fundamentals Chap. 1

Then, command substitution causes the outer command to be rewritten as if it
were:

set len 6

If there are several cases of command substitution within a single com-
mand, the interpreter processes them from left to right. As each right bracket is
encountered, the command it delimits is evaluated. This results in a sensible
ordering in which nested commands are evaluated first so that their result can
be used in arguments to the outer command.

Math Expressions

The Tcl interpreter itself does not evaluate math expressions. Tcl just does
grouping, substitutions and command invocations. The expr command is used to
parse and evaluate math expressions.

Example 1–4 Simple arithmetic.

expr 7.2 / 4
=> 1.8

The math syntax supported by expr is the same as the C expression syntax.
The expr command deals with integer, floating point, and boolean values. Logi-
cal operations return either 0 (false) or 1 (true). Integer values are promoted to
floating point values as needed. Octal values are indicated by a leading zero (e.g.,
033 is 27 decimal). Hexadecimal values are indicated by a leading 0x. Scientific
notation for floating point numbers is supported. A summary of the operator pre-
cedence is given on page 20.

You can include variable references and nested commands in math expres-
sions. The following example uses expr to add the value of x to the length of the
string foobar. As a result of the innermost command substitution, the expr com-
mand sees 6 + 7, and len gets the value 13:

Example 1–5 Nested commands.

set x 7
set len [expr [string length foobar] + $x]
=> 13

The expression evaluator supports a number of built-in math functions.
(For a complete listing, see page 21.) Example 1–6 computes the value of pi:

Example 1–6 Built-in math functions.

set pi [expr 2*asin(1.0)]
=> 3.1415926535897931

Backslash Substitution 7 I. Tc
l Ba

sic
s

The implementation of expr is careful to preserve accurate numeric values
and avoid conversions between numbers and strings. However, you can make
expr operate more efficiently by grouping the entire expression in curly braces.
The explanation has to do with the byte code compiler that Tcl uses internally,
and its effects are explained in more detail on page 15. For now, you should be
aware that these expressions are all valid and run faster than the examples
shown above:

Example 1–7 Grouping expressions with braces.

expr {7.2 / 4}
set len [expr {[string length foobar] + $x}]
set pi [expr {2*asin(1.0)}]

Backslash Substitution

The final type of substitution done by the Tcl interpreter is backslash substitu-
tion. This is used to quote characters that have special meaning to the inter-
preter. For example, you can specify a literal dollar sign, brace, or bracket by
quoting it with a backslash. As a rule, however, if you find yourself using lots of
backslashes, there is probably a simpler way to achieve the effect you are striv-
ing for. In particular, the list command described on page 65 will do quoting for
you automatically. In Example 1–8 backslash is used to get a literal $:

Example 1–8 Quoting special characters with backslash.

set dollar \$foo
=> $foo
set x $dollar
=> $foo

Only a single round of interpretation is done.
The second set command in the example illustrates an important property

of Tcl. The value of dollar does not affect the substitution performed in the
assignment to x. In other words, the Tcl parser does not care about the value of a
variable when it does the substitution. In the example, the value of x and dollar
is the string $foo. In general, you do not have to worry about the value of vari-
ables until you use eval, which is described in Chapter 10.

You can also use backslash sequences to specify characters with their Uni-
code, hexadecimal, or octal value:

set escape \u001b
set escape \0x1b

set escape \033

The value of variable escape is the ASCII ESC character, which has char-
acter code 27. Table 1–1 on page 20 summarizes backslash substitutions.

8 Tcl Fundamentals Chap. 1

A common use of backslashes is to continue long commands on multiple
lines. This is necessary because a newline terminates a command. The backslash
in the next example is required; otherwise the expr command gets terminated by
the newline after the plus sign.

Example 1–9 Continuing long lines with backslashes.

set totalLength [expr [string length $one] + \
[string length $two]]

There are two fine points to escaping newlines. First, if you are grouping an
argument as described in the next section, then you do not need to escape new-
lines; the newlines are automatically part of the group and do not terminate the
command. Second, a backslash as the last character in a line is converted into a
space, and all the white space at the beginning of the next line is replaced by this
substitution. In other words, the backslash-newline sequence also consumes all
the leading white space on the next line.

Grouping with Braces and Double Quotes

Double quotes and curly braces are used to group words together into one argu-
ment. The difference between double quotes and curly braces is that quotes allow
substitutions to occur in the group, while curly braces prevent substitutions.
This rule applies to command, variable, and backslash substitutions.

Example 1–10 Grouping with double quotes vs. braces.

set s Hello
=> Hello
puts stdout "The length of $s is [string length $s]."
=> The length of Hello is 5.
puts stdout {The length of $s is [string length $s].}
=> The length of $s is [string length $s].

In the second command of Example 1–10, the Tcl interpreter does variable
and command substitution on the second argument to puts. In the third com-
mand, substitutions are prevented, so the string is printed as is.

In practice, grouping with curly braces is used when substitutions on the
argument must be delayed until a later time (or never done at all). Examples
include loops, conditional statements, and procedure declarations. Double quotes
are useful in simple cases like the puts command previously shown.

Another common use of quotes is with the format command. This is similar
to the C printf function. The first argument to format is a format specifier that
often includes special characters like newlines, tabs, and spaces. The easiest way
to specify these characters is with backslash sequences (e.g., \n for newline and
\t for tab). The backslashes must be substituted before the format command is

Grouping with Braces and Double Quotes 9 I. Tc
l Ba

sic
s

called, so you need to use quotes to group the format specifier.
puts [format "Item: %s\t%5.3f" $name $value]

Here format is used to align a name and a value with a tab. The %s and
%5.3f indicate how the remaining arguments to format are to be formatted. Note
that the trailing \n usually found in a C printf call is not needed because puts
provides one for us. For more information about the format command, see page
56.

Square Brackets Do Not Group

The square bracket syntax used for command substitution does not provide
grouping. Instead, a nested command is considered part of the current group. In
the command below, the double quotes group the last argument, and the nested
command is just part of that group.

puts stdout "The length of $s is [string length $s]."

If an argument is made up of only a nested command, you do not need to
group it with double-quotes because the Tcl parser treats the whole nested com-
mand as part of the group.

puts stdout [string length $s]

The following is a redundant use of double quotes:
puts stdout "[expr $x + $y]"

Grouping before Substitution

The Tcl parser makes a single pass through a command as it makes group-
ing decisions and performs string substitutions. Grouping decisions are made
before substitutions are performed, which is an important property of Tcl. This
means that the values being substituted do not affect grouping because the
grouping decisions have already been made.

The following example demonstrates how nested command substitution
affects grouping. A nested command is treated as an unbroken sequence of char-
acters, regardless of its internal structure. It is included with the surrounding
group of characters when collecting arguments for the main command.

Example 1–11 Embedded command and variable substitution.

set x 7; set y 9
puts stdout $x+$y=[expr $x + $y]
=> 7+9=16

In Example 1–11, the second argument to puts is:
$x+$y=[expr $x + $y]

The white space inside the nested command is ignored for the purposes of
grouping the argument. By the time Tcl encounters the left bracket, it has
already done some variable substitutions to obtain:

10 Tcl Fundamentals Chap. 1

7+9=

When the left bracket is encountered, the interpreter calls itself recursively
to evaluate the nested command. Again, the $x and $y are substituted before
calling expr. Finally, the result of expr is substituted for everything from the left
bracket to the right bracket. The puts command gets the following as its second
argument:

7+9=16

Grouping before substitution.
The point of this example is that the grouping decision about puts’s second

argument is made before the command substitution is done. Even if the result of
the nested command contained spaces or other special characters, they would be
ignored for the purposes of grouping the arguments to the outer command.
Grouping and variable substitution interact the same as grouping and command
substitution. Spaces or special characters in variable values do not affect group-
ing decisions because these decisions are made before the variable values are
substituted.

If you want the output to look nicer in the example, with spaces around the
+ and =, then you must use double quotes to explicitly group the argument to
puts:

puts stdout "$x + $y = [expr $x + $y]"

The double quotes are used for grouping in this case to allow the variable and
command substitution on the argument to puts.

Grouping Math Expressions with Braces

It turns out that expr does its own substitutions inside curly braces. This is
explained in more detail on page 15. This means you can write commands like
the one below and the substitutions on the variables in the expression still occur:

puts stdout "$x + $y = [expr {$x + $y}]"

More Substitution Examples

If you have several substitutions with no white space between them, you
can avoid grouping with quotes. The following command sets concat to the value
of variables a, b, and c all concatenated together:

set concat ab$c

Again, if you want to add spaces, you’ll need to use quotes:
set concat "$a $b $c"

In general, you can place a bracketed command or variable reference any-
where. The following computes a command name:

[findCommand $x] arg arg

When you use Tk, you often use widget names as command names:
$text insert end "Hello, World!"

Procedures 11 I. Tc
l Ba

sic
s

Procedures

Tcl uses the proc command to define procedures. Once defined, a Tcl procedure
is used just like any of the other built-in Tcl commands. The basic syntax to
define a procedure is:

proc name arglist body

The first argument is the name of the procedure being defined. The second
argument is a list of parameters to the procedure. The third argument is a com-
mand body that is one or more Tcl commands.

The procedure name is case sensitive, and in fact it can contain any charac-
ters. Procedure names and variable names do not conflict with each other. As a
convention, this book begins procedure names with uppercase letters and it
begins variable names with lowercase letters. Good programming style is impor-
tant as your Tcl scripts get larger. Tcl coding style is discussed in Chapter 12.

Example 1–12 Defining a procedure.

proc Diag {a b} {
set c [expr {sqrt($a * $a + $b * $b)}]
return $c

}
puts "The diagonal of a 3, 4 right triangle is [Diag 3 4]"
=> The diagonal of a 3, 4 right triangle is 5.0

The Diag procedure defined in the example computes the length of the diag-
onal side of a right triangle given the lengths of the other two sides. The sqrt
function is one of many math functions supported by the expr command. The
variable c is local to the procedure; it is defined only during execution of Diag.
Variable scope is discussed further in Chapter 7. It is not really necessary to use
the variable c in this example. The procedure can also be written as:

proc Diag {a b} {

return [expr {sqrt($a * $a + $b * $b)}]

}

The return command is used to return the result of the procedure. The
return command is optional in this example because the Tcl interpreter returns
the value of the last command in the body as the value of the procedure. So, the
procedure could be reduced to:

proc Diag {a b} {

expr {sqrt($a * $a + $b * $b)}
}

Note the stylized use of curly braces in the example. The curly brace at the
end of the first line starts the third argument to proc, which is the command
body. In this case, the Tcl interpreter sees the opening left brace, causing it to
ignore newline characters and scan the text until a matching right brace is
found. Double quotes have the same property. They group characters, including
newlines, until another double quote is found. The result of the grouping is that

12 Tcl Fundamentals Chap. 1

the third argument to proc is a sequence of commands. When they are evaluated
later, the embedded newlines will terminate each command.

The other crucial effect of the curly braces around the procedure body is to
delay any substitutions in the body until the time the procedure is called. For
example, the variables a, b, and c are not defined until the procedure is called, so
we do not want to do variable substitution at the time Diag is defined.

The proc command supports additional features such as having variable
numbers of arguments and default values for arguments. These are described in
detail in Chapter 7.

A Factorial Example

To reinforce what we have learned so far, below is a longer example that uses a
while loop to compute the factorial function:

Example 1–13 A while loop to compute factorial.

proc Factorial {x} {
set i 1; set product 1
while {$i <= $x} {

set product [expr {$product * $i}]
incr i

}
return $product

}
Factorial 10
=> 3628800

The semicolon is used on the first line to remind you that it is a command
terminator just like the newline character. The while loop is used to multiply all
the numbers from one up to the value of x. The first argument to while is a bool-
ean expression, and its second argument is a command body to execute. The
while command and other control structures are described in Chapter 6.

The same math expression evaluator used by the expr command is used by
while to evaluate the boolean expression. There is no need to explicitly use the
expr command in the first argument to while, even if you have a much more
complex expression.

The loop body and the procedure body are grouped with curly braces in the
same way. The opening curly brace must be on the same line as proc and while.
If you like to put opening curly braces on the line after a while or if statement,
you must escape the newline with a backslash:

while {$i < $x} \
{

set product ...
}

Always group expressions and command bodies with curly braces.

More about Variables 13 I. Tc
l Ba

sic
s

Curly braces around the boolean expression are crucial because they delay
variable substitution until the while command implementation tests the expres-
sion. The following example is an infinite loop:

set i 1; while $i<=10 {incr i}

The loop will run indefinitely.* The reason is that the Tcl interpreter will
substitute for $i before while is called, so while gets a constant expression 1<=10
that will always be true. You can avoid these kinds of errors by adopting a con-
sistent coding style that groups expressions with curly braces:

set i 1; while {$i<=10} {incr i}

The incr command is used to increment the value of the loop variable i.
This is a handy command that saves us from the longer command:

set i [expr {$i + 1}]

The incr command can take an additional argument, a positive or negative
integer by which to change the value of the variable. Using this form, it is possi-
ble to eliminate the loop variable i and just modify the parameter x. The loop
body can be written like this:

while {$x > 1} {

set product [expr {$product * $x}]
incr x -1

}

Example 1–14 shows factorial again, this time using a recursive definition.
A recursive function is one that calls itself to complete its work. Each recursive
call decrements x by one, and when x is one, then the recursion stops.

Example 1–14 A recursive definition of factorial.

proc Factorial {x} {
if {$x <= 1} {

return 1
} else {

return [expr {$x * [Factorial [expr {$x - 1}]]}]
}

}

More about Variables

The set command will return the value of a variable if it is only passed a single
argument. It treats that argument as a variable name and returns the current
value of the variable. The dollar-sign syntax used to get the value of a variable is
really just an easy way to use the set command. Example 1–15 shows a trick you
can play by putting the name of one variable into another variable:

* Ironically, Tcl 8.0 introduced a byte-code compiler, and the first releases of Tcl 8.0 had a bug in the com-
piler that caused this loop to terminate! This bug is fixed in the 8.0.5 patch release.

14 Tcl Fundamentals Chap. 1

Example 1–15 Using set to return a variable value.

set var {the value of var}
=> the value of var
set name var
=> var
set name
=> var
set $name
=> the value of var

This is a somewhat tricky example. In the last command, $name gets substi-
tuted with var. Then, the set command returns the value of var, which is the
value of var. Nested set commands provide another way to achieve a level of
indirection. The last set command above can be written as follows:

set [set name]

=> the value of var

Using a variable to store the name of another variable may seem overly
complex. However, there are some times when it is very useful. There is even a
special command, upvar, that makes this sort of trick easier. The upvar com-
mand is described in detail in Chapter 7.

Funny Variable Names

The Tcl interpreter makes some assumptions about variable names that
make it easy to embed variable references into other strings. By default, it
assumes that variable names contain only letters, digits, and the underscore.
The construct $foo.o represents a concatenation of the value of foo and the lit-
eral “.o”.

If the variable reference is not delimited by punctuation or white space,
then you can use curly braces to explicitly delimit the variable name (e.g., ${x}).
You can also use this to reference variables with funny characters in their name,
although you probably do not want variables named like that. If you find yourself
using funny variable names, or computing the names of variables, then you may
want to use the upvar command.

Example 1–16 Embedded variable references.

set foo filename
set object $foo.o
=> filename.o
set a AAA
set b abc${a}def
=> abcAAAdef
set .o yuk!
set x ${.o}y
=> yuk!y

More about Math Expressions 15 I. Tc
l Ba

sic
s

The unset Command

You can delete a variable with the unset command:
unset ?-nocomplain? ?--? varName varName2 ...

Any number of variable names can be passed to the unset command. How-
ever, unset will raise an error if a variable is not already defined, unless the
-nocomplain is given. Use -- to unset a variable named -nocomplain.

Using info to Find Out about Variables

The existence of a variable can be tested with the info exists command.
For example, because incr requires that a variable exist, you might have to test
for the existence of the variable first.

Example 1–17 Using info to determine if a variable exists.

if {![info exists foobar]} {
set foobar 0

} else {
incr foobar

}

Example 7–6 on page 92 implements a version of incr which handles this case.

More about Math Expressions

This section describes a few fine points about math in Tcl scripts. In Tcl 7.6 and
earlier versions math is not that efficient because of conversions between strings
and numbers. The expr command must convert its arguments from strings to
numbers. It then does all its computations with double precision floating point
values. The result is formatted into a string that has, by default, 12 significant
digits. This number can be changed by setting the tcl_precision variable to the
number of significant digits desired. Seventeen digits of precision are enough to
ensure that no information is lost when converting back and forth between a
string and an IEEE double precision number:

Example 1–18 Controlling precision with tcl_precision.

expr 1 / 3
=> 0
expr 1 / 3.0
=> 0.333333333333
set tcl_precision 17
=> 17
expr 1 / 3.0
The trailing 1 is the IEEE rounding digit
=> 0.33333333333333331

16 Tcl Fundamentals Chap. 1

In Tcl 8.0 and later versions, the overhead of conversions is eliminated in
most cases by the built-in compiler. Even so, Tcl was not designed to support
math-intensive applications. You may want to implement math-intensive code in
a compiled language and register the function as a Tcl command as described in
Chapter 47.

There is support for string comparisons by expr, so you can test string val-
ues in if statements. You must use quotes so that expr knows to do string com-
parisons:

if {$answer == "yes"} { ... }

However, the string compare and string equal commands described in
Chapter 4 are more reliable because expr may do conversions on strings that
look like numbers. The issues with string operations and expr are discussed on
page 52. Tcl 8.4 introduced eq and ne expr operators to allow strict string based
comparison.

Expressions can include variable and command substitutions and still be
grouped with curly braces. This is because an argument to expr is subject to two
rounds of substitution: one by the Tcl interpreter, and a second by expr itself.
Ordinarily this is not a problem because math values do not contain the charac-
ters that are special to the Tcl interpreter. The second round of substitutions is
needed to support commands like while and if that use the expression evaluator
internally.

Grouping expressions can make them run more efficiently.
You should always group expressions in curly braces and let expr do com-

mand and variable substitutions. Otherwise, your values may suffer extra con-
versions from numbers to strings and back to numbers. Not only is this process
slow, but the conversions can lose precision in certain circumstances. For exam-
ple, suppose x is computed from a math function:

set x [expr {sqrt(2.0)}]

At this point the value of x is a double-precision floating point value, just as
you would expect. If you do this:

set two [expr $x * $x]

then you may or may not get 2.0 as the result! This is because Tcl will substitute
$x and expr will concatenate all its arguments into one string, and then parse
the expression again. In contrast, if you do this:

set two [expr {$x * $x}]

then expr will do the substitutions, and it will be careful to preserve the floating
point value of x. The expression will be more accurate and run more efficiently
because no string conversions will be done. The story behind Tcl values is
described in more detail in Chapter 47 on C programming and Tcl.

Comments

Tcl uses the pound character, #, for comments. Unlike in many other languages,
the # must occur at the beginning of a command. A # that occurs elsewhere is not

Substitution and Grouping Summary 17 I. Tc
l Ba

sic
s

treated specially. An easy trick to append a comment to the end of a command is
to precede the # with a semicolon to terminate the previous command:

Here are some parameters

set rate 7.0 ;# The interest rate
set months 60 ;# The loan term

One subtle effect to watch for is that a backslash effectively continues a
comment line onto the next line of the script. In addition, a semicolon inside a
comment is not significant. Only a newline terminates comments:

Here is the start of a Tcl comment \

and some more of it; still in the comment

The behavior of a backslash in comments is pretty obscure, but it can be
exploited as shown in Example 2–3 on page 27.

A surprising property of Tcl comments is that curly braces inside comments
are still counted for the purposes of finding matching brackets. The motivation
for this odd feature was to keep the original Tcl parser simpler. However, it
means that the following will not work as expected to comment out an alternate
version of an if expression:

if {boolean expression1} {

if {boolean expression2} {
some commands

}

The previous sequence results in an extra left curly brace, and probably a
complaint about a missing close brace at the end of your script! A technique I use
to comment out large chunks of code is to put the code inside an if block that
will never execute:

if {0} {

unused code here
}

Substitution and Grouping Summary

The following rules summarize the fundamental mechanisms of grouping and
substitution that are performed by the Tcl interpreter before it invokes a com-
mand:

• Command arguments are separated by white space, unless arguments are
grouped with curly braces or double quotes as described below.

• Grouping with curly braces, { }, prevents substitutions. Braces nest. The
interpreter includes all characters between the matching left and right
brace in the group, including newlines, semicolons, and nested braces. The
enclosing (i.e., outermost) braces are not included in the group’s value.

18 Tcl Fundamentals Chap. 1

• Grouping with double quotes, " ", allows substitutions. The interpreter
groups everything until another double quote is found, including newlines
and semicolons. The enclosing quotes are not included in the group of char-
acters. A double-quote character can be included in the group by quoting it
with a backslash, (e.g., \").

• Grouping decisions are made before substitutions are performed, which
means that the values of variables or command results do not affect group-
ing.

• A dollar sign, $, causes variable substitution. Variable names can be any
length, and case is significant. If variable references are embedded into
other strings, or if they include characters other than letters, digits, and the
underscore, they can be distinguished with the ${varname} syntax.

• Square brackets, [], cause command substitution. Everything between
the brackets is treated as a command, and everything including the brack-
ets is replaced with the result of the command. Nesting is allowed.

• The backslash character, \, is used to quote special characters. You can
think of this as another form of substitution in which the backslash and the
next character or group of characters are replaced with a new character.

• Substitutions can occur anywhere unless prevented by curly brace grouping.
Part of a group can be a constant string, and other parts of it can be the
result of substitutions. Even the command name can be affected by substi-
tutions.

• A single round of substitutions is performed before command invocation.
The result of a substitution is not interpreted a second time. This rule is
important if you have a variable value or a command result that contains
special characters such as spaces, dollar signs, square brackets, or braces.
Because only a single round of substitution is done, you do not have to
worry about special characters in values causing extra substitutions.

Fine Points

• A common error is to forget a space between arguments when grouping with
braces or quotes. This is because white space is used as the separator, while
the braces or quotes only provide grouping. If you forget the space, you will
get syntax errors about unexpected characters after the closing brace or
quote. The following is an error because of the missing space between } and
{:

if {$x > 1}{puts "x = $x"}

• A double quote is only used for grouping when it comes after white space.
This means you can include a double quote in the middle of a group without
quoting it with a backslash. This requires that curly braces or white space
delimit the group. I do not recommend using this obscure feature, but this
is what it looks like:

set silly a"b

Fine Points 19 I. Tc
l Ba

sic
s

• When double quotes are used for grouping, the special effect of curly braces
is turned off. Substitutions occur everywhere inside a group formed with
double quotes. In the next command, the variables are still substituted:

set x xvalue

set y "foo {$x} bar"
=> foo {xvalue} bar

• When double quotes are used for grouping and a nested command is encoun-
tered, the nested command can use double quotes for grouping, too.

puts "results [format "%f %f" $x $y]"

• Spaces are not required around the square brackets used for command sub-
stitution. For the purposes of grouping, the interpreter considers every-
thing between the square brackets as part of the current group. The
following sets x to the concatenation of two command results because there
is no space between] and [.

set x [cmd1][cmd2]

• Newlines and semicolons are ignored when grouping with braces or double
quotes. They get included in the group of characters just like all the others.
The following sets x to a string that contains newlines:

set x "This is line one.

This is line two.

This is line three."

• During command substitution, newlines and semicolons are significant as
command terminators. If you have a long command that is nested in square
brackets, put a backslash before the newline if you want to continue the
command on another line. This was illustrated in Example 1–9 on page 8.

• A dollar sign followed by something other than a letter, digit, underscore, or
left parenthesis is treated as a literal dollar sign. The following sets x to the
single character $.

set x $

20 Tcl Fundamentals Chap. 1

Reference

Backslash Sequences

Arithmetic Operators

Table 1–1 Backslash sequences.

\a Bell. (0x7)

\b Backspace. (0x8)

\f Form feed. (0xc)

\n Newline. (0xa)

\r Carriage return. (0xd)

\t Tab. (0x9)

\v Vertical tab. (0xb)

\<newline> Replace the newline and the leading white space on the next line with a space.

\\ Backslash. (‘\’)

\ooo Octal specification of character code. 1, 2, or 3 octal digits (0-7).

\xhh Hexadecimal specification of character code. 1 or 2 hex digits. Be careful
when using this in a string of characters, because all hexadecimal characters
following the \x will be consumed, but only the last 2 will specify the value.

\uhhhh Hexadecimal specification of a 16-bit Unicode character value. 4 hex digits.

\c Replaced with literal c if c is not one of the cases listed above. In particular,
\$, \", \{, \}, \], and \[are used to obtain these characters.

Table 1–2 Arithmetic operators from highest to lowest precedence.

- ~ ! Unary minus, bitwise NOT, logical NOT.

* / % Multiply, divide, remainder.

+ - Add, subtract.

<< >> Left shift, right shift.

< > <= >= Comparison: less, greater, less or equal, greater or equal.

== != eq ne Equal, not equal, string equal (Tcl 8.4), string not equal (Tcl 8.4).

& Bitwise AND.

^ Bitwise XOR.

| Bitwise OR.

&& Logical AND.

|| Logical OR.

x?y:z If x then y else z.

Reference 21 I. Tc
l Ba

sic
s

Built-in Math Functions

Table 1–3 Built-in math functions.

acos(x) Arccosine of x.

asin(x) Arcsine of x.

atan(x) Arctangent of x.

atan2(y,x) Rectangular (x,y) to polar (r,th). atan2 gives th.

ceil(x) Least integral value greater than or equal to x.

cos(x) Cosine of x.

cosh(x) Hyperbolic cosine of x.

exp(x) Exponential, ex.

floor(x) Greatest integral value less than or equal to x.

fmod(x,y) Floating point remainder of x/y.

hypot(x,y) Returns sqrt(x*x + y*y). r part of polar coordinates.

log(x) Natural log of x.

log10(x) Log base 10 of x.

pow(x,y) x to the y power, xy.

sin(x) Sine of x.

sinh(x) Hyperbolic sine of x.

sqrt(x) Square root of x.

tan(x) Tangent of x.

tanh(x) Hyperbolic tangent of x.

abs(x) Absolute value of x.

double(x) Promote x to floating point.

int(x) Truncate x to an integer.

round(x) Round x to an integer.

rand() Return a random floating point value between 0.0 and 1.0.

srand(x) Set the seed for the random number generator to the integer x.

wide(x) Promote x to a wide (64-bit) integer. (Tcl 8.4)

22 Tcl Fundamentals Chap. 1

Core Tcl Commands

The pages listed in Table 1–4 give the primary references for the command.

Table 1–4 Built-in Tcl commands.

Command Pg. Description

after 228 Schedule a Tcl command for later execution.

append 56 Append arguments to a variable’s value. No spaces added.

array 97 Query array state and search through elements.

binary 59 Convert between strings and binary data.

break 83 Exit loop prematurely.

catch 83 Trap errors.

cd 122 Change working directory.

clock 183 Get the time and format date strings.

close 121 Close an open I/O stream.

concat 65 Concatenate arguments with spaces between. Splices lists.

console 29 Control the console used to enter commands interactively.

continue 83 Continue with next loop iteration.

error 85 Raise an error.

eof 116 Check for end of file.

eval 130 Concatenate arguments and evaluate them as a command.

exec 105 Fork and execute a UNIX program.

exit 124 Terminate the process.

expr 6 Evaluate a math expression.

fblocked 233 Poll an I/O channel to see if data is ready.

fconfigure 231 Set and query I/O channel properties.

fcopy 250 Copy from one I/O channel to another.

file 108 Query the file system.

fileevent 229 Register callback for event-driven I/O.

flush 116 Flush output from an I/O stream’s internal buffers.

for 82 Loop construct similar to C for statement.

foreach 79 Loop construct over a list, or lists, of values.

format 56 Format a string similar to C sprintf.

gets 119 Read a line of input from an I/O stream.

Reference 23 I. Tc
l Ba

sic
s

glob 122 Expand a pattern to matching file names.

global 90 Declare global variables.

history 196 Use command-line history.

if 76 Test a condition. Allows else and elseif clauses.

incr 12 Increment a variable by an integer amount.

info 186 Query the state of the Tcl interpreter.

interp 292 Create additional Tcl interpreters.

join 72 Concatenate list elements with a given separator string.

lappend 66 Add elements to the end of a list.

lindex 68 Fetch an element of a list.

linsert 68 Insert elements into a list.

list 65 Create a list out of the arguments.

llength 68 Return the number of elements in a list.

load 697 Load shared libraries that define Tcl commands.

lrange 68 Return a range of list elements.

lreplace 68 Replace elements of a list.

lsearch 69 Search for an element of a list that matches a pattern.

lset 62 Set an element in a list. (Tcl 8.4)

lsort 70 Sort a list.

namespace 213 Create and manipulate namespaces.

open 116 Open a file or process pipeline for I/O.

package 175 Provide or require code packages.

pid 124 Return the process ID.

proc 87 Define a Tcl procedure.

puts 119 Output a string to an I/O stream.

pwd 122 Return the current working directory.

read 120 Read blocks of characters from an I/O stream.

regexp 158 Match regular expressions.

regsub 162 Substitute based on regular expressions.

rename 88 Change the name of a Tcl command.

return 86 Return a value from a procedure.

Table 1–4 Built-in Tcl commands. (Continued)

24 Tcl Fundamentals Chap. 1

scan 58 Parse a string according to a format specification.

seek 121 Set the seek offset of an I/O stream.

set 5 Assign a value to a variable.

socket 239 Open a TCP/IP network connection.

source 26 Evaluate the Tcl commands in a file.

split 71 Chop a string up into list elements.

string 49 Operate on strings.

subst 140 Substitute embedded commands and variable references.

switch 77 Test several conditions.

tell 121 Return the current seek offset of an I/O stream.

time 202 Measure the execution time of a command.

trace 193 Monitor variable assignments.

unknown 178 Handle unknown commands.

unset 13 Delete variables.

uplevel 138 Execute a command in a different scope.

upvar 91 Reference a variable in a different scope.

variable 207 Declare namespace variables.

vwait 230 Wait for a variable to be modified.

while 79 Loop until a boolean expression is false.

Table 1–4 Built-in Tcl commands. (Continued)

