
C H A P T E R 1

WHAT IS A WEB
SERVER?

Never trust a computer you can’t throw out a window.

—Steve Wozniak

1

CHAPTER OBJECTIVES

In this chapter you will learn about:

✔ Client/Server Basics Page 2
✔ Electronic Publishing Page 10
✔ HTTP Overview Page 19
✔ Other Web-Related Servers Page 29

In this chapter we provide some background information on how docu-
ments are published on the World Wide Web. We explain how comput-

ers on the Internet talk to each other and, more important, how Web pages
get from a Web server to a browser. When setting up a Web server, it is im-
portant to know a little about the underlying technology: the communica-
tions protocols, network terminology, and document formats.

4663ch01.qxd_lb 12/2/99 12:54 PM Page 1

L A B 1 . 1

CLIENT/SERVER BASICS

Before we even start to talk about Web servers, let’s look at clients and
servers in general. In network terminology, a client is a piece of hardware
or software used to communicate with a data provider (server). Normally,
only one user uses a specific client at a time. A client connects to a server
to send and receive information. Think of a client as a program that gets
information from somewhere else. A server is usually a large computer ca-
pable of providing data to many clients at the same time. The word server
can mean the physical computer or piece of hardware, or it can refer to
the actual server software or daemon running on that machine. A daemon
is a program that offers a service to other programs, usually over a net-
work. It accepts requests from clients, processes the requests, and returns
the results to the requesting client. Although the client and server can be
on the same machine, they are usually on separate machines connected
by some kind of network.

The World Wide Web (WWW) uses this client/server model to allow mil-
lions of users to access Web sites all over the world. A Web server is a spe-
cific type of server that knows how to communicate with clients using
the HyperText Transfer Protocol (HTTP). A protocol is just a standard set
of rules that allow a client and server to communicate. For a client and
server to communicate, they must speak the same protocol. HTTP allows
clients to request documents and servers to respond with those docu-
ments. We will look at HTTP in more detail in Lab 1.3, but for now, think

LAB OBJECTIVES

After completing this lab, you will be able to:

• Understand Client/Server Concepts
• Describe Basic Functionality of Web Servers

and Browsers

2 Lab 1.1: Client/Server Basics

LAB
1.1

4663ch01.qxd_lb 12/2/99 12:54 PM Page 2

of it as a small language. On the Web, the clients are Web browsers—ap-
plications especially well suited for displaying HTML content. Web
servers wait for clients to connect and when a connection is established,
they receive a request from the client and then respond—usually return-
ing a document or image. The Web server process is usually referred to as
the HTTPD, or HTTP daemon.

NETWORK CONNECTIONS AND PORTS
To connect to a server, the client must be able to communicate with it
over the network. Computers connected to the Internet typically com-
municate using TCP/IP (Transmission Control Protocol and the Internet
Protocol). TCP/IP allows different types of computers to communicate at
a low level; it is up to applications, however, to determine how client and
server software talk to each other. Applications such as e-mail, ftp, and
Web browsers use their own protocols (SMTP, HTTP, etc.) to communi-
cate on the application level while using TCP/IP at the network level.

TCP/IP uses IP addresses to communicate between computers. Each com-
puter on the Internet has its own unique IP address. When a computer
wants to send a message to another machine on the Internet, it specifies
the address of the other machine and the message finds its way through
the network. This is similar to how a letter finds its way through the
postal system. The destination computer may have many different ser-
vices running on it, so to specify which service we want to communicate
with, we must use a port number. Each service has a unique number as-
signed to it known as a port number. Most of the services have standard
port numbers.

SERVERS AND BROWSERS
The main goal of any Web server is to provide documents to clients. The
first Web servers were very simple and did little more than this. Today’s
Web servers are full of features that allow them to do more than just
respond to simple requests for static documents, and many provide
easy-to-use graphical user interfaces for administration and customiza-
tion. Today’s servers support options that allow the creation of dynamic
documents—documents that are generated on the fly, not stored on disk.

The purpose of a Web browser is to retrieve and display information from
a Web server by using HTTP. A browser allows any user to access a server
easily. Without even knowing what a Web server is, a user can easily ob-
tain information from one just by entering a URL. Browsers have evolved

Lab 1.1: Client/Server Basics 3

LAB
1.1

4663ch01.qxd_lb 12/2/99 12:54 PM Page 3

also, adding features that far extend the capabilities of browsers that once
displayed only basic HTML.

BROWSER PLUG-INS
A plug-in extends the capabilities of a browser by allowing it to dis-
play more than just HTML documents. Adobe’s Acrobat plug-in allows
browsers to display PDF (Portable Document Format) files, and Macro-
media Shockwave and Flash plug-ins allow authors to embed multimedia
applications in Web pages. Plug-ins typically rely on the browser to re-
trieve the content (using HTTP) and then display it themselves. Plug-ins
such as Real Networks’ RealPlayer, however, are able to use their own pro-
tocols instead of HTTP to retrieve content. RealPlayer enables browsers to
play streaming audio and video, which has different requirements than
text documents, so a protocol other than HTTP is used by the plug-in to
enhance performance. Helper applications are similar to plug-ins; they
allow you to view content that your browser cannot. Unlike plug-ins,
helper applications run outside the browser. They are stand-alone appli-
cations and they cannot be used to embed content in Web pages.

LAB 1.1 EXERCISES

1.1.1 UNDERSTAND CLIENT/SERVER CONCEPTS

a) What are the benefits of using a client/server model?

b) Give an example of another type of client/server application.

c) How does a hostname get translated into an address? Find out the
IP address of a host (try www.phptr.com).

4 Lab 1.1: Client/Server Basics

LAB
1.1

4663ch01.qxd_lb 12/2/99 12:54 PM Page 4

a) What is the primary function of an HTTP server?

b) Who developed the first Web server? What other early Web
servers were developed?

c) What is the primary function of a Web browser?

d) What was the first Web browser? Why did it succeed where sim-
ilar services (such as ftp, gopher, and WAIS) failed?

LAB 1.1 EXERCISE ANSWERS

1.1.1 UNDERSTAND CLIENT/SERVER CONCEPTS

a) What are the benefits of using a client/server model?

Answer: Making data available on a server can make it possible for many clients to ac-
cess that data. Clients can be dispersed geographically. Clients are sure to receive the
most up-to-date information. The framework of the server can be changed (database
back ends can be switched) without affecting the clients. Server maintenance is easier
if all clients are connecting to one place.

The client/server model is ideal for distributed applications. A server al-
lows clients access to current data and allows clients to be dispersed any-
where there is network connectivity. A client generally asks a server for a

Lab 1.1: Client/Server Basics 5

LAB
1.1

1.1.2 DESCRIBE BASIC FUNCTIONALITY OF WEB SERVERS
AND BROWSERS

4663ch01.qxd_lb 12/2/99 12:54 PM Page 5

resource but does not care how the server gets that resource. Therefore,
the server’s underlying technology can be changed without changing the
client’s functionality. For instance, you could change your server to ac-
cess an Oracle database instead of a Microsoft database. Another benefit
to having all services provided through a central server is that maintain-
ing those services becomes a little easier—or at least more manageable.

One of the benefits of this model is that all account information is lo-
cated in a central place. Consider the example of a bank with automated
teller machines (ATMs). If bank account information were stored at each
ATM site, it would be much harder to keep accounts up to date. By cen-
tralizing account information, many clients are able to get up-to-date ac-
count information easily. Administration is also easier when there is just
one central server to worry about. It is easier to monitor and maintain
one server or even a number of servers when they are all in one central-
ized location.

b) Give an example of another type of client/server application.

Answer: A classic example of client/server is a bank ATM network. Think of the ATMs
as clients—one user at a time can use each ATM to make withdrawals from their ac-
count. Each ATM connects to a central computer (a server) to verify your PIN number
and gain access to your account information.

c) How does a hostname get translated into an address? Find out the IP
address of a host (try www.phptr.com).

Answer: When a client wants to talk to a server, it must know the IP address. A user
will usually enter a hostname rather than IP address, though, and the computer will
then resolve the hostname into an IP address that it can use. When the client makes
an initial request to talk with a server, it specifies which IP address it wants to talk with
(the unique IP address of the server) and specifies a port number. A port number is
used to specify which service the client wishes to use (HTTP, telnet, ftp, etc.). Think of
this like a telephone call: a telephone number is like an IP address and a port is an ex-
tension. Ports allow networked computers to provide many services but use only a sin-
gle address.

Applications use standard port numbers to communicate. Some standard
services and ports are:

FTP 20, 21
Telnet 23
SMTP (e-mail) 25
HTTP 80

6 Lab 1.1: Client/Server Basics

LAB
1.1

4663ch01.qxd_lb 12/2/99 12:54 PM Page 6

When you type a URL into a Web browser to request a Web page via
HTTP, it will try to connect to the server at port 80 unless you specify a
different port number. There may be times when you want to run a ser-
vice on a nonstandard port. For instance, you might have a production
Web server running on port 80 but set up another HTTPD on port 8080
for testing purposes. On UNIX servers, port numbers below 1024 are
available only for use by programs running as the root user (the system
administrator). Ports above 1023 are available to programs running as
any normal user provided that the port is not already in use. Once a dae-
mon starts running on a port, any client can connect to it.

a) What is the primary function of an HTTP server?

Answer: The primary function of an HTTP server is to service client requests for docu-
ments. It waits for HTTP requests and then returns data for each one. An HTTP dae-
mon provides an HTTP service. It allows a server to support client requests for
documents. It generates errors when invalid requests are received or when a document
cannot be found. The Web server process also generates log files of requests, errors,
and other information.

b) Who developed the first Web server? What other early Web servers
were developed?

Answer: The European Laboratory for Particle Physics (CERN) produced one of the
first Web servers. The World Wide Web Consortium (W3C) took over development of
the CERN HTTPD (also known as the W3C HTTPD), but no longer supports it. The
W3C currently supports a Java-based server known as Jigsaw. Both the CERN HTTPD
and Jigsaw are reference implementations, meaning that they illustrate features of
HTTP but are not meant for large-scale production use. Source code is available for
both servers and they are excellent points of reference for developers wishing to write
their own HTTP daemons.

The National Center for Supercomputing Applications (NCSA) also cre-
ated an HTTP server early in the evolution of the Internet. The CERN
HTTPD was difficult to configure and not available for many platforms,
so NCSA wrote their own version. The NCSA server quickly became
the most popular Web server on the WWW from 1993 to 1995. Like
the CERN server, however, development on the NCSA HTTPD has also
ceased. Apache is a popular server based on the NCSA implementation.
Originally written using existing code from the NCSA HTTPD, it has since
been rewritten completely. Currently, Apache is the most widely used
Web server software, with close to 50 percent market share.

Lab 1.1: Client/Server Basics 7

LAB
1.1

1.1.2 DESCRIBE BASIC FUNCTIONALITY OF WEB SERVERS
AND BROWSERS

4663ch01.qxd_lb 12/2/99 12:54 PM Page 7

Apache, CERN, and NCSA all released the source code for their Web
servers. This made fixing bugs easier because anyone could see how the
server worked. These servers make excellent examples for Web server de-
velopers, and they allow easy modification or customization of any as-
pect of the server.

c) What is the primary function of a Web browser?

Answer: The primary function of a Web browser is to display HTML documents. Al-
though it can be used to view local documents on a hard drive, it is normally used as a
client to retrieve documents from an HTTP server. Although browser software has ex-
panded over the past few years to include such services as e-mail and news, its pri-
mary function is to format HTML documents for display.

d) What was the first Web browser? Why did it succeed where similar
services (such as ftp, gopher, and WAIS) failed?

Answer: The first real HTML browser, NCSA Mosaic, came into being in early 1993.
Although the hypertext documents had been around for some time, Mosaic had sev-
eral essential features that made it popular right from the start. First, it was free, as
are most browsers even today. Second, it was available for all major platforms: UNIX,
Macintosh, and Microsoft Windows. Third, it was easy to create content—no special
software was required to write HTML, only a text editor. Before Mosaic, only text-
based clients such as gopher, WAIS, telnet, and FTP were widely available for retriev-
ing information on the Internet. An easy-to-use GUI interface and easy-to-create
content launched the Web in the form of NCSA Mosaic clients and HTTPD servers.

LAB 1.1 SELF-REVIEW QUESTIONS

To test your progress, you should be able to answer the following questions.

1) A Web server is which of the following?
a) _____ Software
b) _____ Hardware
c) _____ Both a and b

2) A Web server can run on just about any type of machine, not just a huge, ex-
pensive server.
a) _____ True
b) _____ False

3) A browser utilizes which of the following technologies? (Choose all that apply.)
a) _____ A network
b) _____ A Web server
c) _____ A phone line
d) _____ HTTP

8 Lab 1.1: Client/Server Basics

LAB
1.1

4663ch01.qxd_lb 12/2/99 12:54 PM Page 8

4) Which of the following may be a reason for running a Web server on a port
other than port 80?
a) _____ You don’t have access to port 80 (since you aren’t root).
b) _____ You are running multiple Web servers on the same machine.
c) _____ You don’t have enough memory.
d) _____ Both a and b
e) _____ All of the above

5) A server can also be a client.
a) _____ True
b) _____ False

Answers appear in Appendix A.

Lab 1.1: Client/Server Basics 9

LAB
1.1

4663ch01.qxd_lb 12/2/99 12:54 PM Page 9

L A B 1 . 2

ELECTRONIC
PUBLISHING

To understand more about Web servers and HTTP transactions, one must
also be aware of how authors create and publish electronic documents.
Although the focus of this book is not content creation, it is a good idea
to familiarize yourself with some of the more technical aspects of elec-
tronic documents.

One of the strengths of the Web is the support of hypertext documents. A
hypertext document contains hyperlinks (commonly referred to as links)
that allow the reader to jump easily from one document to another, or to
move around the current document. Links allow the user to follow a spe-
cific thread or view quickly documents on related topics. The Web is not
limited to text documents, though; HTML documents can contain im-
ages, sounds, animations, and even video. Web publishing is about creat-
ing hypermedia, not just hypertext.

In the Web-publishing realm, we deal with two types of files: ASCII text
files and binary files. ASCII files can be HTML or plain text or some other
simple format. Most other files tend to be of the binary kind. A simple

LAB OBJECTIVES

After completing this lab, you will be able to:

• Understand the Basics of Creating Hypertext
Documents

• Understand the Difference between ASCII
and Binary Files

• Give Examples of MIME Types

10 Lab 1.2: Electronic Publishing

LAB
1.2

4663ch01.qxd_lb 12/2/99 12:54 PM Page 10

text editor (notepad, emacs, vi) can create ASCII text files. You can create
HTML documents by writing the HTML tags yourself with a text editor.
Most Web authors will use a good text editor to do some of their author-
ing but supplement its use with a specialized HTML authoring package.
Netscape Composer, Microsoft FrontPage, Macromedia Dreamweaver,
and Adobe PageMill are some widely used HTML authoring packages.

ASCII TEXT FILES
Strictly speaking, an HTML document is just an ASCII text file. ASCII is
the most common way of storing plain text on a computer. It uses nu-
merical values (from 0 to 127) to represent letters, numbers, and other
characters. Each byte of the file represents a specific character. For exam-
ple, the letter “A” is represented by the number 65, the letter “B” by 66,
and so on. For a list of all the ASCII values, see Appendix B.

ASCII text files are not compressed and can usually be viewed or edited
by any simple text editor. Most operating systems can view and edit plain
text files easily. Most use ASCII for representing text. Part of the appeal of
HTML is that it is very easy to view the source code. This allows anyone
to see how a certain effect was created.

BINARY FILES
A binary file is one that generally does not contain plain text in ASCII
format. Images, sounds, and even compressed ASCII files are all binary
files. To view them, an application must interpret the file. Word proces-
sors also create binary files—although they create text documents; the ap-
plication saves the document in a binary format. Your word processor
may be able to read and write ASCII files, too, but the files do not contain
formatting information (fonts, margin settings, and the like). Any image
or sound editing application also deals with binary files.

IMAGES
There are hundreds of file formats available for storing graphics and im-
ages. Web browsers typically support only a handful of image formats,
however. The most common types of images are GIF and JPEG formats.
Each of these formats has strengths and weaknesses. Both formats use
compression to reduce the size of the file. GIF uses a lossless compression,
meaning that it does not lose any of the image quality. JPEG images, on
the other hand, use a lossy compression in which a relatively small file
size is achieved with sacrifice to the image quality. GIF supports up to
256 colors, while JPEG images support millions of colors.

Lab 1.2: Electronic Publishing 11

LAB
1.2

4663ch01.qxd_lb 12/2/99 12:54 PM Page 11

Another format that is just recently gaining popularity in Web publishing
is the PNG (portable network graphic) format. PNG images offer millions
of colors, lossless compression, and other features that make them a good
alternative to GIF images in many cases. Table 1.1 summarizes the differ-
ences in these image formats.

AUDIO
Most browsers have the ability to play sound files. This ability allows
Web authors to include sound clips in their HTML documents. Audio
files are embedded in a page to play automatically, or they can be used as
links to be played when a user clicks on a link to the sound file. There are
three sound formats commonly used on the Web, one corresponding to
each of the three major platforms. Most current browsers with audio ca-
pabilities can support all three formats, so authors are free to choose
which format to use and not worry too much about compatibility issues.
Table 1.2 summarizes the differences in the three most common audio
formats: WAV, AIFF, and AU.

MIME TYPES
The multipurpose internet mail extensions (MIME) are a set of rules that
allow multimedia documents to be exchanged among many different
computer systems. MIME was originally designed for sending attach-
ments in e-mail, but it is also incorporated into HTTP. MIME uses media
types and subtypes to describe the format of a file.

A Web server must determine the MIME type of a file before it sends it to
the browser. To do this, it looks at the filename extension (suffix) and
then tries to find that suffix in the MIME types database. Usually, this
database is just a text file named MIME.types that contains a list of
media types and their associated file extensions. It then sends the MIME
type along with the document to the browser. The browser can use the
MIME type to determine how it should display the document. Both the

12 Lab 1.2: Electronic Publishing

LAB
1.2

Table 1.1 ■ Image File Formats

GIF JPEG PNG

256 colors (8-bit) 16 million colors (24-bit) 16 million colors (24-bit)

Lossless compression Lossy compression Lossless compression

Transparency No transparency Transparency and opacity

Can be animated No animation No animation

4663ch01.qxd_lb 12/2/99 12:54 PM Page 12

server and client must have a simple MIME types database. On the server
it is usually a text file. On the client, each user may have its own MIME
settings, either in a file or as part of the operating system configuration.
Windows maintains file type associations in the registry, while UNIX typ-
ically uses text files. Maintaining a database for each user allows users to
customize their tools to use different applications, depending on what
type of file they’re trying to view.

There are currently seven different media types in use: application, audio,
image, message, multipart, text, and video. These media types provide a
high-level description of the type of data sent. MIME also uses subtypes
to further describe the actual data. For example, HTML is a text format, so
it falls into the text media type. Its subtype is just html, so the MIME
type for an HTML document would be text/html. A plain text docu-
ment is described by text/plain. Images fall into the image category;
image/gif describes a GIF image and image/jpeg describes a JPEG
image file.

LAB 1.2 EXERCISES

Use a text editor (not a word processor or publishing program) to create
a simple HTML document with a hyperlink to the Prentice Hall Web site
(http://www.phptr.com/).

Lab 1.2: Electronic Publishing 13

LAB
1.2

Table 1.2 ■ Audio File Formats

WAV Files AIFF Files AU Files

Originated on Windows- Originated on Originated on Sun
based machine Macintosh (audio Microsystems work-
(introduced with interchange file stations (UNIX)
Windows 3.0) format)

8-kHz, 8-bit mono to 8-kHz, 8-bit mono to 8-kHz, 8-bit mono to
44-kHz, 16-bit stereo 48-kHz, 16-bit stereo 48-kHz, 16-bit stereo

Formally known as Used for Red Book CD The “original” Internet
RIFF WAVE audio audio sound file format

Can be compressed or Not compressed; very Can be compressed or
uncompressed pure format uncompressed

1.2.1 UNDERSTAND THE BASICS OF CREATING
HYPERTEXT DOCUMENTS

4663ch01.qxd_lb 12/2/99 12:54 PM Page 13

a) What happens when you view your page in a browser?

b) Click on the hyperlink; it should display the Prentice Hall home
page. View the source of the Prentice Hall home page. What do you
see?

a) Find an image on the Prentice Hall home page. Can you determine
what type of image it is?

b) View the image by itself, then view the source of the image in the
browser as you did with an HTML file. What do you see?

1.2.3 GIVE EXAMPLES OF MIME TYPES

a) View any Web page from a browser. How can you determine
what the MIME type of the document is?

14 Lab 1.2: Electronic Publishing

LAB
1.2

1.2.2 UNDERSTAND THE DIFFERENCE BETWEEN ASCII
AND BINARY FILES

4663ch01.qxd_lb 12/2/99 12:54 PM Page 14

b) How are MIME types used when requesting or receiving docu-
ments on the Web?

LAB 1.2 EXERCISE ANSWERS

Use a text editor (not a word processor or publishing program) to create a
simple HTML document with a hyperlink to the Prentice Hall Web site
(http://www.phptr.com/).

a) What happens when you view your page in a browser?

Answer: If you created a valid HTML document and saved it with a .html extension,
it should look like a simple Web page—as you’d expect. If you saved it with a .txt
extension (which is the default for many text editors), you might be looking at the
source HTML in your browser rather than a formatted version. And, of course, if the
HTML you entered is not valid, you might see some rather strange results in
the browser.

Here is a simple example HTML document:

<HTML>
<TITLE>My web Page</TITLE>

This is a simple web page.

Click Here for Prentice
Hall
</HTML>

To create an HTML document, simply enter this text into a text editor
and save it as myfile.html. In Windows, use notepad by clicking on the
“Run” option in the Start menu, and entering “notepad” as the program
to open. Enter the text to create your document and then save it as
myfile.html in the directory of your choice. It is very important to save
it with a .html extension; if you don’t, the browser will not know that it
is an HTML document.

Lab 1.2: Electronic Publishing 15

LAB
1.2

1.2.1 UNDERSTAND THE BASICS OF CREATING
HYPERTEXT DOCUMENTS

4663ch01.qxd_lb 12/2/99 12:54 PM Page 15

b) Click on the hyperlink; it should display the Prentice Hall home page.
View the source of the Prentice Hall home page. What do you see?

Answer: Viewing the source of any HTML document you find on the Web should show
you the source code used to generate the document. For very complex pages, a lot of
source is displayed, and it is often hard to read. For simpler pages, however, you can
see exactly how the page is put together. This text that you are viewing is plain ASCII
text with no special formatting.

Clicking the right mouse button in Netscape or Internet Explorer brings
up a menu that allows you to view the source of the current document.
The “View Info” option in Netscape gives you valuable information
about the page also. If you right-click on an image or other object in a
page, the menu displays different options.

a) Find an image on the Prentice Hall home page. Can you determine
what type of image it is?

Answer: If you can determine the name of the image file, you should be able to deter-
mine the type by the filename extension. To find the name of the image, you might try
looking at the source code. The filenames for all images in the document should be in
the tags.

Another way to get more information about an image is to right-click on
the image in the browser to bring up the options menu. For Netscape,
click on “View Image.” This displays the image by itself in the browser
window. Now right-click on the image and select “View Info.” This
should display some information about the image, including its MIME
type. In Internet Explorer, you can right-click on an image in an HTML
document and select properties from the pop-up menu. This will also dis-
play the type, size, and other information about the image.

b) View the image by itself, then view the source of the image in the
browser as you did with an HTML file. What do you see?

Answer: In Netscape, do a “View Image” as in Exercise 1.2.1. Now right-click on the
image and select “View Source” or select “Page Source” from the view menu. You
should see a page full of garbage characters. This is binary data. Unlike ASCII text
files, images are not meant to be viewed in text mode.

16 Lab 1.2: Electronic Publishing

LAB
1.2

1.2.2 UNDERSTAND THE DIFFERENCE BETWEEN ASCII
AND BINARY FILES

4663ch01.qxd_lb 12/2/99 12:54 PM Page 16

1.2.3 GIVE EXAMPLES OF MIME TYPES

a) View any Web page from a browser. How can you determine what the
MIME type of the document is?

Answer: In Netscape, you can get information about the page that you’re currently
viewing by selecting “Page Info” from the view menu. In Internet Explorer, you can
right-click in the document and select “Properties” from the option menu. Along with
the MIME type, you can view other information about the document that is provided
from the HTTP headers. Netscape shows the last modified time, when the document
expires, and whether or not the document is cached.

For HTML documents you should see that the MIME type is text/html.
The media type is “text”—HTML is fundamentally text. The subtype is
html, which further describes the type of text.

b) How are MIME types used when requesting or receiving documents on
the Web?

Answer: A browser is able to specify what types of data it is capable of displaying, and
it specifies this by using MIME types. When a server returns a document, it must tell
the browser what type of data is being returned, and it also specifies this by using a
standard MIME type.

LAB 1.2 SELF-REVIEW QUESTIONS

To test your progress, you should be able to answer the following questions.

1) An HTML file contains:
a) _____ Text
b) _____ Images
c) _____ Both text and images
d) _____ Binary data

2) Which of the following types of tools cannot be used to create hypertext
documents?
a) _____ A simple text editor
b) _____ A word processing program
c) _____ An automatic HTML generator
d) _____ A graphics utility
e) _____ All of these are capable of creating hypertext documents.

Lab 1.2: Electronic Publishing 17

LAB
1.2

4663ch01.qxd_lb 12/2/99 12:54 PM Page 17

3) Mime types are important for which of the following reasons?
a) _____ They allow the browser and server to communicate.
b) _____ They tell applications what kinds of documents are being sent.
c) _____ They speed the transmission of binary files.
d) _____ FTP uses them to determine how to transfer files.

4) What is the MIME type of an HTML document?
a) _____ html/text
b) _____ HTML
c) _____ text/html
d) _____ text/plain

5) Why is a simple text editor useful to a webmaster?
a) _____ It generates plain text files with no special characters.
b) _____ Text editors are generally available on all platforms.
c) _____ In many cases it’s quicker than using a large application.
d) _____ All of the above

Answers appear in Appendix A.

18 Lab 1.2: Electronic Publishing

LAB
1.2

4663ch01.qxd_lb 12/2/99 12:54 PM Page 18

L A B 1 . 3

HTTP OVERVIEW

HTTP TRANSACTIONS
As you learned in Lab 1.1, HTTP is a protocol that allows Web browsers to
talk to servers and exchange information. HTTP provides a standard way
of communicating between browsers and Web servers—so any browser
can talk to any server, provided that they both conform to the HTTP
specification. HTTP expects the client to initiate a request and the server
to respond. Each request and response has three parts: the request or sta-
tus line, the header fields, and the entity body.

■ FOR EXAMPLE
When you type a URL into your browser, it initiates an HTTP request to a
Web server. That request has the following sections:

• Request line. This line contains a request method, the document
location, and the protocol version.

• Header section. This series of lines contains HTTP headers that
are used to pass other information about the request, and
about the client itself, to the server. A blank line then separates
the header section from the entity body.

• Entity body. This section contains other data to be passed to the
server. There is usually information here only when a form is
submitted.

LAB OBJECTIVES

After completing this lab, you will be able to:

• Identify the Parts of an HTTP Transaction
• Identify HTTP Request Methods
• Identify HTTP Headers and Server Responses

Lab 1.3: HTTP Overview 19

LAB
1.3

4663ch01.qxd_lb 12/2/99 12:54 PM Page 19

If we typed http://webmaster.merrimack.edu/simple.html as a
URL into Netscape, the browser would issue an HTTP request similar to
the following:

GET /simple.html HTTP/1.0
User-Agent: Mozilla/4.5 [en] (X11; SunOS 5.5.1 sun4m)
Accept: image/gif, image/x-xbitmap, image/jpeg, */*

There is a request line, followed by two HTTP headers and no entity
body. The request line has three parts: a request method, the document
location, and the protocol version. In this case the method is a GET
method, the document requested is simple.html, and the protocol is
HTTP version 1.0. The client also passes the User-Agent and Accept head-
ers to the server.

The server then responds to the request in a similar fashion:

• Status line. This line contains the protocol version, a status
code, and a reason phrase.

• Header section. This series of lines contains HTTP headers that
are used to pass other information about the response, and
about the server itself, to the client. A blank line then separates
the header section from the entity body.

• Entity body. This section, if present, contains the document (or
object) requested.

For the previous example, the server response might look something like
this:

HTTP/1.1 200 OK
Date: Mon, 04 Jan 1999 00:33:10 GMT
Server: Apache/1.3.1 (Unix)
Last-Modified: Tue, 20 Oct 1998 21:00:39 GMT
Content-Length: 49
Content-Type: text/html

<HTML>
Welcome to the webmaster server...
</HTML>

There is a status line, followed by a header section containing five head-
ers, and the entity body, which is a simple HTML document. Like the re-
quest line, the status line has three parts: the protocol version, a status
code, and a reason phrase. In this case, the server is using HTTP version

20 Lab 1.3: HTTP Overview

LAB
1.3

4663ch01.qxd_lb 12/2/99 12:54 PM Page 20

1.1, and the HTTP response code is 200, which means that the client’s
request was successful and the server’s response contains the data re-
quested. The header section contains several headers that tell us a little
bit about the server and the document returned in the entity body.

REQUEST METHODS
The request line of a client request contains an HTTP command called a
request method. The server uses the method command to determine what
to do with the request. There are currently several methods defined by
the HTTP 1.1 standard, but only a few are widely supported by HTTP
servers. The most widely used methods are GET, HEAD, and POST.
Method commands should be in all-capital letters.

THE GET METHOD

The GET method is used to retrieve information from the server. It is
most commonly used to retrieve documents from the Web server. Noth-
ing is passed to the server in the entity body because this method is sim-
ply a request. The document returned by the server could be a static
HTML document, output generated by a CGI program, or it could be an
error generated by the server if something is wrong with the request. The
previous example illustrates a GET method.

The GET method can pass information to the server (usually to a CGI
program), but it must be included as part of the URL. To pass parameters
as part of the URL, the URL must be followed by a question mark (?) and
then the parameter pairs.

THE HEAD METHOD

The HEAD method is identical to the GET method except that the server
does not return a document; it returns only the header section for the re-
quest. The HEAD method is useful for verifying that a document exists
for checking links or to get information about the file type and modifica-
tion time only.

THE POST METHOD

The POST method allows the server to receive data from the client. It is
most commonly used to send the data in HTML forms to the server for
processing. This method passes data to the server in the entity body of
the request.

Lab 1.3: HTTP Overview 21

LAB
1.3

4663ch01.qxd_lb 12/2/99 12:54 PM Page 21

OTHER METHODS

The PUT method is becoming more widely supported. It is used for pub-
lishing documents to the Web server from a client. Many of the latest
HTML authoring packages support posting documents to a Web server
via the PUT method (more on this in Chapter 3). The DELETE method is
used to remove a document from a Web server.

SERVER RESPONSES
After an HTTP server receives a request, it attempts to process the request.
If a document is requested, the Web server will attempt to find the docu-
ment and return it. If form information is passed to the server, the
HTTPD passes that information to the appropriate resource for processing
and returns any output. If the resource requested cannot be located, or if
there is something wrong with the request itself, the server generates an
error.

The server response, like the client request, has three parts: the status
line, header fields, and the entity body. The status line contains three
things: the protocol version, the status code, and a description phrase.
The protocol should always be HTTP. The status code is a three-digit inte-
ger result code defined by the HTTP specification. The first digit of the
status code represents the category of the response. There are currently
five categories:

1) Informational. The request was received and is being processed.
2) Success. The client request was successful.
3) Redirection. The client request was not performed; further ac-

tion must be taken by the client.
4) Client error. The client’s request was incomplete or incorrect

and cannot be fulfilled.
5) Server error. The request was not fulfilled, due to a server

problem.

Here are some of the most common response codes.

INFORMATIONAL 1XX

100 Continue The initial part of the request has been received and
the client should continue.

22 Lab 1.3: HTTP Overview

LAB
1.3

4663ch01.qxd_lb 12/2/99 12:54 PM Page 22

SUCCESSFUL 2XX

200 OK This is probably the most common response; it
means that the client’s request was successful and
the server’s response contains the resource requested.

204 No Content The request was successful but the response is empty.
The client should not do anything when it receives
this message.

REDIRECTION 3XX

301 Moved Permanently The URL requested is no longer
valid. The server should return
the new location.

302 Found (Moved Temporarily) The URL requested currently re-
sides in a different location.

304 Not Modified The client performed a condi-
tional GET (If-Modified-Since
header) and the document has
not been modified. The entity
body is not sent.

CLIENT ERROR 4XX

400 Bad Request The server could not understand the request.
403 Forbidden The client requested data that it did not have per-

mission to access.
404 Not Found The resource requested was not found on the

server.

SERVER ERROR 5XX

500 Internal Server Error Something unexpected happened on the
server side. The most common reason for
receiving this error is a problem with a
server side program.

HTTP HEADERS
The HTTP header section is used to transfer information between the
client and server. A header has a name and a value associated with it.
There is one header per line and each line contains the header name fol-
lowed by a colon, a space, and the value of the header name. Headers are
used to transfer information about the client to the server, and vice versa.
They are also used to transfer data related to the returned document,

Lab 1.3: HTTP Overview 23

LAB
1.3

4663ch01.qxd_lb 12/2/99 12:54 PM Page 23

cache parameters, cookies, and other session information. Some of the
most common HTTP headers are described below.

CLIENT REQUEST HEADERS

Accept Used to specify which media types the client
prefers to accept.

Cookie Contains cookie information (name/value pair,
etc.) for the URL requested.

If-Modified-Since Used to do a conditional GET request. The server
will return the document only if it has been modi-
fied since the date specified.

Referer Allows the client to specify the URL of the page
from which the currently requested URL was
obtained.

User-Agent Contains information about the client program
originating the request. It is used to identify the
browser software.

SERVER RESPONSE HEADERS

Server Contains information about the server software handling
the request.

Set-Cookie Allows the server to set a cookie on the client browser (if
permitted) for the given URL or domain.

ENTITY HEADERS

Content-Length Specifies the size (in bytes) of the data transferred in
the entity body. This header is sent for most static
documents, but not for dynamically generated con-
tent (i.e., CGI programs).

Content-Type Specifies the MIME type of the data returned in the
entity body.

Expires Specifies the time/date after which the response is
considered outdated. This header is useful for
caching documents—if the browser knows when the
document will change, it does not need to retrieve a
fresh copy until then.

Last-Modified Specifies the date and time the document was last
modified.

24 Lab 1.3: HTTP Overview

LAB
1.3

4663ch01.qxd_lb 12/2/99 12:54 PM Page 24

LAB 1.3 EXERCISES

1.3.1 IDENTIFY THE PARTS OF AN HTTP TRANSACTION

a) What are the three parts of every HTTP transaction?

1.3.2 IDENTIFY HTTP REQUEST METHODS

a) Name the three most widely used request methods.

b) What is the difference between a GET and a POST method?

c) What is the difference between a HEAD and a GET method?

1.3.3 IDENTIFY HTTP HEADERS AND SERVER RESPONSES

a) What header is sent by the client to identify and give information
about the browser?

Lab 1.3: HTTP Overview 25

LAB
1.3

4663ch01.qxd_lb 12/2/99 12:54 PM Page 25

b) What header is sent by the server so that the browser can deter-
mine what type of content is being returned?

c) What header is sent by the server to identify the server software?

LAB 1.3 EXERCISE ANSWERS

1.3.1 IDENTIFY THE PARTS OF AN HTTP TRANSACTION

a) What are the three parts of every HTTP transaction?

Answer: A request or response line, a header section, and an entity body.

A request line is sent as the first line of all HTTP requests. The browser
then sends any relevant headers. An entity body is sent only when data
other than the headers needs to be sent to the server. A GET method does
not usually contain an entity body, but a POST or PUT method usually
does.

A response line is sent as the first line of all HTTP responses. The server
then sends any relevant headers and the entity body. The entity body is
usually the document requested, but it could also be error information if
an error occurred while trying to retrieve the document.

1.3.2 IDENTIFY HTTP REQUEST METHODS

a) Name the three most widely used request methods.

Answer: GET, POST, and HEAD.

Currently, these are the most widely used request methods. As new fea-
tures are added to the HTTP specification, other methods may become
more widely used.

b) What is the difference between a GET and a POST method?

26 Lab 1.3: HTTP Overview

LAB
1.3

4663ch01.qxd_lb 12/2/99 12:54 PM Page 26

Answer: The GET method contains no entity body. To pass data to the server it must
include the data in the URL. The POST method transfers data in the entity body.

c) What is the difference between a HEAD and a GET method?

Answer: The HEAD method is used to return the header section for a specific docu-
ment; it does not return the document itself.

1.3.3 IDENTIFY HTTP HEADERS AND SERVER RESPONSES

a) What header is sent by the client to identify and give information
about the browser?

Answer: The User-Agent request header contains information about the client program
originating the request. This is not a required header, but most browsers send it when
making a request. The server can use this header to determine what browser is re-
questing a document and to tailor its response if necessary.

Netscape sends a User-Agent header similar to the following:

Mozilla/4.5 [en] (X11; U; SunOS 5.5.1 sun4m)

Internet Explorer sends a User-Agent header similar to the following:

Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)

b) What header is sent by the server so that the browser can determine
what type of content is being returned?

Answer: The Content-Type header indicates the media type of the data contained in
the entity body. The server determines the type of data by looking at the file extension
and referencing the MIME types file.

c) What header is sent by the server to identify the server software?

Answer: The Server header field contains information about the HTTPD software.

The Apache Web server returns a Server header similar to the following:

Server: Apache/1.3.1 (Unix)

Microsoft’s IIS returns a Server header similar to the following:

Server: Microsoft-IIS/4.0

Lab 1.3: HTTP Overview 27

LAB
1.3

4663ch01.qxd_lb 12/2/99 12:54 PM Page 27

LAB 1.3 SELF-REVIEW QUESTIONS

To test your progress, you should be able to answer the following questions.

1) What is the first thing that is passed to the server when an HTTP transaction
begins?
a) _____ The request line
b) _____ The entity body
c) _____ The transaction line
d) _____ The header section

2) The GET method is the only method that retrieves information from the
server.
a) _____ True
b) _____ False

3) What is the Referer header used for?
a) _____ It refers people to your site.
b) _____ It redirects URLs that no longer exist.
c) _____ It shows the link that was clicked to get to the page being requested.
d) _____ It is not used.

4) Headers are used by the browser to determine when a document will expire.
a) _____ True
b) _____ False

Answers appear in Appendix A.

28 Lab 1.3: HTTP Overview

LAB
1.3

4663ch01.qxd_lb 12/2/99 12:54 PM Page 28

L A B 1 . 4

OTHER WEB-RELATED
SERVERS

A server that can communicate by HTTP is a great thing because it is able
to communicate with millions of other computers. Any browser can re-
trieve your pages and view them. For many people, a system running an
HTTP server suits their needs just fine, but there are other servers that
you should know about. In this lab we discuss a few of the most common
servers that run alongside an HTTP server.

PROXY SERVERS
A proxy server is an intermediary server that goes between a client and
the destination server—a middleman. A browser configured to use a
proxy server for all requests allows the proxy server to process the request
and response. Instead of connecting directly to the destination server
when a request for a URL is made, the browser sends the request to the
proxy. The proxy then passes the request to the destination server, re-
ceives the response, and passes the response back to the browser. This
may sound like a lot of work, but having a proxy machine in the middle
of the transaction allows some extra processing of the returned data to
take place.

Proxy servers have three main uses: security, content filtering, and
caching. Used for security purposes, the proxy can act as a firewall, allow-

LAB OBJECTIVES

After completing this lab, you will be able to:

• Understand the Functionality of Proxy Servers
• Identify Other Services That May Run Alongside an

HTTP Server

Lab 1.4: Other Web-Related Servers 29

LAB
1.4

4663ch01.qxd_lb 12/2/99 12:54 PM Page 29

ing only HTTP traffic through and rejecting other protocols. A firewall
limits what kinds of services are available to people outside your local
network. You might only want to allow HTTP requests to get to your
server and deny FTP, telnet, and other services. Proxies can also filter
data, restricting access to certain sites or analyzing content for question-
able material. Caching proxy servers help improve performance by stor-
ing frequently accessed documents locally.

Security uses of proxy servers are covered in detail in Chapter 10, so let’s
take a look at the other two uses for proxies: filtering and caching. Re-
stricting access to content based on file type is another possible use for a
proxy. In terms of security, html documents are reasonably harmless, but
executable files can pose a threat to security. A system administrator may
choose to allow only nonexecutable content through the proxy, blocking
.exe files and similar documents that execute on local hosts. By allowing
only simple text documents and images through the proxy, it is much
more difficult for viruses and hackers to gain access to computers on your
side of the proxy.

Not all Web pages are cacheable, because content is dynamically gener-
ated. HTTP headers play a big role in determining if a new document
needs to be retrieved or if the cached document is still valid. The Expires
HTTP header specifies when the document may change. A Web cache can
look at this header to determine if the document is still valid. If the Ex-
pires header is set to a time in the past, a new document is retrieved; oth-
erwise, the cached version is returned. If the server did not set an Expires
header, the client can use the If-Modified-Since header to fetch the docu-
ment only if it had not been modified since a certain date. The client re-
quests the document conditionally with a GET method, and the server
returns the document or issues a 304—Not Modified response code if the
document has not changed.

Your browser software must be explicitly configured to use a proxy server.
Figure 1.1 shows a sample configuration dialog from Netscape Navigator.
We use MediaOne Express as our Internet service provider (ISP) at home
and they provide a proxy cache server for their users. The cache server
stores frequently accessed Web pages so when one is requested, the cache
server can return the page rather than retrieving it from a distant server
on the Internet. Using the proxy server makes pages that we go to load
much quicker. It also makes better use of the ISP’s bandwidth by going
outside the local network only when new pages need to be retrieved.

30 Lab 1.4: Other Web-Related Servers

LAB
1.4

4663ch01.qxd_lb 12/2/99 12:54 PM Page 30

■ FOR EXAMPLE
To configure your browser to use a proxy server, you must first obtain the
names of your local proxies or a URL that has the correct proxy configu-
ration information. Your ISP might provide proxy servers, but not all do.
For Netscape:

• Click on “Preferences” in the Edit menu.
• Select “Proxies” from the Advanced tab.
• The default is a direct connection to the Internet—no proxies.

Clicking on “Manual Proxy Configuration” allows you to select
“View,” which brings up the dialog shown in Figure 1.1. Auto-
matic Proxy configuration allows you to specify a URL contain-
ing proxy information. This allows the system administrator to
change proxies dynamically.

Lab 1.4: Other Web-Related Servers 31

LAB
1.4

Figure 1.1 ■ Netscape Navigator Proxy Settings

4663ch01.qxd_lb 12/2/99 12:54 PM Page 31

If you don’t have a proxy server already, you can set one up yourself.
Many of the Web server packages discussed in Lab 4.1 offer proxy services
in addition to normal HTTP server capabilities.

STREAMING AUDIO AND VIDEO
For a browser to play an audio or video file, it must first download the en-
tire file. Over a modem connection, it takes a long time to download a
few minutes of audio or a few seconds of video. The solution: streaming
media, which allow a media player (or plug-in) to start playing multi-
media content while the data is still being received. Instead of having to
wait for the entire file to download, the player can start almost imme-
diately. A streaming media server can broadcast live audio/video feeds
(from a video capture card, for instance) or serve prerecorded clips.

HTTP does not support streaming media, so a different server must be
used to publish streaming media. Browsers don’t support streaming
media, so a plug-in must be used to view any type of streaming content.
When a user clicks on a link for a streamed file, the browser will start up
the appropriate player. That player will connect to the server at a specific
port and request a file or live stream, much like an HTTP transaction. As
the player starts receiving the data, it may store a few seconds’ worth in a
buffer and then start to play the stream—whether audio, video, or both.
With traditional audio and video files, the entire file must be down-
loaded before a player can read it. In addition, unlike HTTP, many
streaming media formats may use UDP instead of TCP/IP as a network
protocol.

UDP is good at transmitting very small pieces of data quickly, and for dig-
ital audio and video, it works quite well. Unlike TCP/IP, UDP will not re-
transmit data if there is an error. This is fine for digital audio and video
because a few bits lost here or there will hardly be noticeable. Lost or de-
layed data may account for pops and clicks in audio as it plays back.
While TCP/IP offers reliability, it is somewhat slower than UDP, so it is
used primarily when a UDP connection is unavailable for some reason.

The two leading streaming media packages are RealNetworks’ RealSystem
and Microsoft’s Windows Media (formerly NetShow). Both packages offer
similar features and quality.

FTP
FTP (File Transfer Protocol) is used to transfer files between computers on
a network. A host with a Web server running on it may also set up an FTP
server so that Web pages can be uploaded to the server easily. Like HTTP,

32 Lab 1.4: Other Web-Related Servers

LAB
1.4

4663ch01.qxd_lb 12/2/99 12:54 PM Page 32

FTP relies on client and server software. The FTP daemon (FTPD) is a pro-
gram that runs on the server and allows clients to connect. It provides a
means of authentication so that only authorized users can transfer files to
and from the server. UNIX servers generally install an FTPD by default,
and an FTP server can be installed on Windows NT along with Mi-
crosoft’s IIS (Internet Information Server). FTP clients are available for
just about any operating system. UNIX and Microsoft Windows both
come with a simple, text-based FTP client that can be used to transfer files
to any server running an FTPD. Although FTP is not the only way to
transfer files to a server, it is one of the most widely supported.

DATABASES
Most business sites rely on some sort of database, either for E-commerce
transaction processing or to allow access to current support documents or
product information, for example. A database provides an efficient, orga-
nized way to store lots of information. Unfortunately, most databases
don’t provide a friendly interface that anyone can use to access this infor-
mation. The Web provides a familiar, easy-to-use way of accessing data,
and a Web developer can easily write programs that run on the Web
server and display information from a database.

A large corporate database should typically be installed on its own dedi-
cated server and not on a machine also used as a Web server. A large data-
base requires lots of memory, disk space, and CPU power, so installing it
on a machine that is also trying to process Web pages may be a bad idea.
The database will also have a daemon running to respond to queries; this
allows programs on the Web server to communicate with the database
server. This type of database daemon is often called a listener. Many data-
base packages now come with tools to make authoring Web-database
applications much easier. Products such as Oracle 8I include HTML gen-
eration tools, integration with Java, and may even provide a Web server
built into the database software.

SSL
By default, HTTP traffic is transmitted in clear text; it is not encrypted.
This is fine for most general surfing, but if you want to start sending con-
fidential information over the Web, it becomes an issue. Secure Sockets
Layer (SSL) is a protocol that allows secure, encrypted communication
over TCP/IP. It is often used with HTTP to allow information to be ex-
changed securely between a browser and a Web server. Most commercial
Web server software includes an SSL server that can run alongside the
http daemon. SSL is used mostly for Web transactions, but it can be used
to encrypt any communications over TCP/IP. Netscape developed the SSL

Lab 1.4: Other Web-Related Servers 33

LAB
1.4

4663ch01.qxd_lb 12/2/99 12:54 PM Page 33

standard that is now supported by most browsers. SSL is covered in more
detail in Lab 4.5 and Chapter 13.

LAB 1.4 EXERCISES

1.4.1 UNDERSTAND THE FUNCTIONALITY OF PROXY SERVERS

a) What are the benefits of a caching proxy server?

b) How is a proxy used to filter content?

c) Explain what happens when a URL is requested by a browser that
is configured to use a proxy.

a) Why is a streaming audio server useful if you want to deliver
audio content?

b) Why is an FTP server useful on a machine running a Web server?

34 Lab 1.4: Other Web-Related Servers

LAB
1.4

1.4.2 IDENTIFY OTHER SERVICES THAT MAY RUN ALONGSIDE
AN HTTP SERVER

4663ch01.qxd_lb 12/2/99 12:54 PM Page 34

LAB 1.4 EXERCISE ANSWERS

1.4.1 UNDERSTAND THE FUNCTIONALITY OF PROXY SERVERS

a) What are the benefits of a caching proxy server?

Answer: A caching proxy server helps improve performance for intranets. In general
terms, a cache is something that keeps frequently used data available for quick access.
When a user requests a URL, the proxy server checks to see if it has a local copy. If it
does, that copy may get returned rather than fetching the document from the real
Web site again. This is similar to the disk cache that Web browsers use, but by keep-
ing all the documents on a local server, many users are able to benefit. The speed of
intranets is typically very fast compared to the connection to the Internet, so retrieving
files from a local server is noticeably faster than retrieving files from an external server
somewhere on the Internet.

To improve performance without using a dedicated proxy cache server,
your Web browser most likely has a local disk cache that holds many of
the Web pages you have recently viewed. If you go back to one of those
pages, your browser will just grab the file off the hard drive rather than
retrieve the same document from the Web server. This saves network
bandwidth and makes browsing much faster on your end.

b) How is a proxy used to filter content?

Answer: There are many reasons to filter Web content; the most common is to deny
access to certain pages. Many schools set up proxy servers to filter “inappropriate”
content. When the proxy receives a page that contains certain words that are deemed
unsuitable, instead of returning the page to the browser, it will return a page saying
that the page requested cannot be viewed. This method restricts access on a per-page
basis. Some pages at a given site are viewable, while others that contain questionable
material are blocked. Another method of restricting access is on a per-site basis. The
proxy can be configured to block access to entire Web sites that are considered
unacceptable.

c) Explain what happens when a URL is requested by a browser that is
configured to use a proxy.

Answer: The browser will actually make an HTTP connection to the proxy server, not
the Web server requested. The proxy receives the request from the browser and then
makes a connection to the Web server for that URL. The proxy server retrieves the re-
sponse and then returns the data to the client requesting it.

Lab 1.4: Other Web-Related Servers 35

LAB
1.4

4663ch01.qxd_lb 12/2/99 12:54 PM Page 35

a) Why is a streaming audio server useful if you want to deliver audio content?

Answer: Streaming audio allows users to listen to long audio clips (or even live audio
feeds) without having to wait for a large audio file to download. The client will start
playing the audio almost instantly. This works well as long as the network is fast
enough to support the constant flow of data. Compression algorithms make the audio
data small enough that even a modem connection is fast enough for decent-sounding
audio transmission.

b) Why is an FTP server useful on a machine running a Web server?

Answer: FTP provides an easy, standard way of transferring files to a Web server. FTP
clients are available for many platforms, so just about anyone can use it. Since Web
pages may be created on other machines, there must be a way to publish those files
to the server. FTP provides some security by requiring a login and password, although
anonymous logins are possible. Most server operating systems provide an FTP daemon
as part of the core OS.

LAB 1.4 SELF-REVIEW QUESTIONS

To test your progress, you should be able to answer the following questions.

1) Proxy servers are required to allow an intranet to access the Internet.
a) _____ True
b) _____ False

2) A proxy server can be used for caching or filtering, but not both.
a) _____ True
b) _____ False

3) Which of the following is not used to transfer files to a Web server?
a) _____ MS FrontPage server extensions
b) _____ FTP
c) _____ Telnet
d) _____ A modem

4) Which of the following is not a function of a proxy server?
a) _____ Security
b) _____ CGI programming
c) _____ Caching
d) _____ Filtering

Answers appear in Appendix A.

36 Lab 1.4: Other Web-Related Servers

LAB
1.4

1.4.2 IDENTIFY OTHER SERVICES THAT MAY RUN ALONGSIDE
AN HTTP SERVER

4663ch01.qxd_lb 12/2/99 12:54 PM Page 36

C H A P T E R 1

TEST YOUR THINKING
The projects in this section use the skills you’ve acquired in this chapter. The answers
to these projects are available to instructors only through a Prentice Hall sales repre-
sentative and are intended to be used in classroom discussion and assessment.

1) Create a simple HTML document on your local system and view it with your fa-
vorite browser.

a) Try changing the extension from .html to .txt and view it in your browser. Is
anything different?

2) Upload the document to a server using FTP. Open the correct URL up with a
browser.

3) Connect to the server at port 80 with a telnet client; issue a GET command to re-
trieve the file.

Chapter 1: What Is A Web Server? 37

4663ch01.qxd_lb 12/2/99 12:54 PM Page 37

