é chpt_intro.fm Page 3 Friday, August 25, 2000 1:23 PM

a

AN INTRODUCTION TO
SOLARIS

The UNIX system is very successful. At the time of writing there
are over 3000 UNIX systems in active use throughout the world.

—S.R. Bourne, The UNIX System, 1983

Sun systems have shipped with a UNIX-based operating system since the first
Sun-1 workstation was introduced in 1982. Steve Bourne’s quote indicates how rel-
atively small the UNIX market was at that time. Today, millions of UNIX systems
are deployed, running a variety of applications ranging from single-user systems,
to real-time control systems, to mission- and business-critical environments—and
Solaris represents a large percentage of these systems.

The Solaris installed base has rapidly increased its since its inception. It is
available on SPARC processor architectures from Sun and OEMs and on standard
Intel-based systems. Solaris scales from single-processor systems to the 64-proces-
sor Sun Enterprise 10000 system.

ﬁ

*@%

é chpt_intro.fm Page 4 Friday, August 25, 2000 1:23 PM

a

1.1

An Introduction to Solaris

A Brief History

Sun’s UNIX operating environment began life as a port of BSD UNIX to the Sun-1
workstation. The early versions of Sun’s UNIX were known as SunOS, which is the
name used for the core operating system component of Solaris.

SunOS 1.0 was based on a port of BSD 4.1 from Berkeley labs in 1982. At that
time, SunOS was implemented on Sun’s Motorola 68000-based uniprocessor work-
stations. SunOS was small and compact, and the workstations had only a few
MIPS of processor speed and around one megabyte of memory.

In the early to mid-1980s, networked UNIX systems were growing in popular-
ity; networking was becoming ubiquitous and was a major part of Sun’s computing
strategy. Sun invested significant resources in developing technology that enabled
distributed, network-based computing. These technologies included interfaces for
building distributed applications (remote procedure calls, or RPC), and operating
system facilities for the sharing of data over networks (Network Information Sys-
tem, or NIS) and a distributed computing file system: NFS. The incorporation of
remote file sharing into SunOS required extensive operating system changes. In
1984, SunOS 2.0 offered the virtual file system framework to implement multiple
file system types, which allowed support for the NFS file system. The network file
system source was made openly licensable and has subsequently been ported to
almost every modern operating system platform in existence today.

The volume of applications running on the Sun platform increased steadily, with
each new application placing greater demand on the system, providing the cata-
lyst for the next phase of innovation. Applications needed better facilities for the
sharing of data and executable objects. The combination of the need for shared pro-
gram libraries, memory mapped files, and shared memory led to a major re-archi-
tecting of the SunOS virtual memory system. The new virtual memory system,
introduced as SunOS version 4, abstracted various devices and objects as virtual
memory, facilitating the mapping of files, sharing of memory, and mapping of hard-
ware devices into a process.

During the 1980s, the demand for processing capacity outpaced the industry’s
incremental improvements in processor speed. To satisfy the demand, systems
were developed with multiple processors sharing the same system memory and
Input/Output (I/0) infrastructure, an advance that required further operating sys-
tem changes. An asymmetric multiprocessor implementation first appeared in
SunOS 4.1—the kernel could run on only one processor at a time, while user pro-
cessors could be scheduled on any of the available processors. Workloads with mul-
tiple processes could often obtain greater throughput on systems with more than
one processor. The asymmetric multiprocessor implementation was a great step
forward; however, scalability declined rapidly as additional processors were added.
The need for a better multiprocessor implementation was obvious.

ﬁ%

ﬁ

&

é chpt_intro.fm Page 5 Friday, August 25, 2000 1:23 PM

a

A Brief History 5

At this time, Sun was participating in a joint development with AT&T, and the
SunOS virtual file system framework and virtual memory system became the core
of UNIX System V Release 4 (SVR4). SVR4 UNIX incorporated the features from
SunOS, SVR3, BSD UNIX, and Xenix, as shown below. International Computers
Limited (ICL) ported the new SVR4 UNIX to the SPARC processor architecture
and delivered the reference source for SVR4 on SPARC.

With the predicted growth in multiprocessor systems, Sun invested heavily in the
development of a new operating system kernel with a primary focus on multipro-
cessor scalability. The new kernel allowed multiple threads of execution and pro-
vided facilities for threading at the process (application) level. Together with
fine-grained locking, the new kernel provided the foundation for the scalability
found in Solaris today. The new kernel and the SVR4 operating environment
became the basis for Solaris 2.0.

This change in the base operating system was accompanied by a new naming
convention; the Solaris name was introduced to describe the operating environ-
ment, of which SunOS, the base operating system, is a subset. Thus, the older
SunOS retained the SunOS 4.X versioning and adopted Solaris 1.X as the operat-
ing environment version. The SVR4-based environment adopted a SunOS 5.X ver-
sioning (SunOS 5.0 being the first release) with the Solaris 2.X operating
environment. The naming convention has resulted in most people referring to the
pre-SVR4 releases as SunOS, and the SVR4-based releases as Solaris. Table 1-1
traces the development of Solaris from its roots to Solaris 7.

The new Solaris 2.0 operating environment was built in a modular fashion,
which made possible its implementation on multiple platforms with different
instruction set architectures. In 1993, Solaris was made available for Intel
PC-based architectures, greatly expanding the platforms on which Solaris is avail-
able. In October 1999, Sun announced support for Solaris on the Intel Itanium pro-
Cessor.

The next major milestone was the introduction of a 64-bit implementation, in
Solaris 7. Full 64-bit support allows the kernel and processes to access large
address spaces and to use extended 64-bit data types. Solaris 7 also provides full
compatibility for existing 32-bit applications, supporting concurrent execution of
32-bit and 64-bit applications.

*@%

4~ 4

é chpt_intro.fm Page 6 Friday, August 25,2000 1:23 PM é

6 An Introduction to Solaris

T

Table 1-1 Solaris Release History

Date Release Notes
1982 | Sun UNIX 0.7 | e First version of Sun’s UNIX, based on 4.BSD
from UniSoft.

¢ Bundled with the Sun-1, Sun’s first workstation
based on the Motorola 68000 processor; SunWin-

dows GUI.
1983 | SunOS 1.0 ¢ Sun-2 workstation, 68010 based.
1985 | SunOS 2.0 e Virtual file system (VFS) and vnode framework

allows multiple concurrent file system types.
e NFS implemented with the VFS/vnode frame-
work.

1988 | SunOS 4.0 e New virtual memory system integrates the file
system cache with the memory system.

¢ Dynamic linking added.

e The first SPARC-based Sun workstation, the
Sun-4. Support for the Intel-based Sun 386i.

1990 |SunOS 4.1 ¢ Supports the SPARCstationl1+, IPC, SLC.

¢ OpenWindows graphics environment

1992 | Sun0S 4.1.3 e Asymmetric multiprocessing (ASMP) for sun4m
systems (SPARCstation-10 and -600 series MP
(multiprocessor) servers).

1992 | Solaris 2.0 e Solaris 2.x is born, based on a port of System V
Release 4.0.

e VFS/vnode, VM system, intimate shared mem-
ory brought forward from SunOS.

e Uniprocessor only.

¢ First release of Solaris 2, version 2.0, is a desk-
top-only developers release.

1992 | Solaris 2.1 ¢ Four-way symmetric multiprocessing (SMP).

1993 | Solaris 2.2 e Large (> 2 Gbyte) file system support.

e SPARCserver 1000 and SPARCcenter 2000
(sun4d architecture).

1993 | Solaris 2.1-x86 | ® Solaris ported to the Intel i386 architecture.

1993 | Solaris 2.3 ¢ 8-way SMP.

¢ Device power management and system sus-
pend/resume functionality added.

e New directory name lookup cache.

*@%

4~ 4

é chpt_intro.fm Page 7 Friday, August 25, 2000 1:23 PM

A Brief History 7

Table 1-1 Solaris Release History (Continued)

Date Release Notes
1994 | Solaris 2.4 e 20-way SMP.

e New kernel memory allocator (slab allocator)
replaces SVR4 buddy allocator.

¢ Caching file system (cachefs).

¢ CDE windowing system.

1995 | Solaris 2.5 e Large-page support for kernel and System V
shared memory.

¢ Fast local interprocess communication (Doors)
added.

e NFS Version 3.

e Supports sundu (UltraSPARC) architecture.
UltraSPARC-I-based products introduced—the
Ultra-1 workstation.

1996 | Solaris 2.5.1 ¢ First release supporting multiprocessor Ultra-
SPARC-based systems.
e 64-way SMP.
e Ultra-Enterprise 3000-6000 servers introduced.
1996 | Solaris 2.6 ¢ Added support for large (> 2 Gbyte files).

¢ Dynamic processor sets.

¢ Kernel-based TCP sockets.
¢ Locking statistics.

e UFS direct I/O.

¢ Dynamic reconfiguration.
1998 | Solaris 7 ® 64-bit kernel and process address space.

¢ Logging UFS integrated.

¢ Priority Paging memory algorithm.

The information in Table 1-1 shows the significant features incorporated in each
major release of Solaris. Details of all of the features can be found in the Solaris
release What’s New document, which is part of the documentation supplied with
Solaris.

.

é chpt_intro.fm Page 8 Friday, August 25,2000 1:23 PM

a

An Introduction to Solaris

1.2 Key Differentiators

Solaris development continued aggressively throughout the 1990s. Several key fea-
tures distinguish Solaris from earlier UNIX implementations.

Symmetric multiprocessing — Solaris is implemented on systems rang-
ing from single-processor systems to 64-processor symmetric multiprocessor
servers. Solaris provides linear scalability up to the currently supported max-
imum of 64 processors.

64-bit kernel and process address space — A 64-bit kernel for 64-bit
platforms provides an LP64 execution environment. (LP64 refers to the data
model: long and pointer data types are 64 bits wide.) A 32-bit application
environment is also provided so that 32-bit binaries execute on a 64-bit
Solaris kernel alongside 64-bit applications.

Multiple platform support — Solaris supports a wide range of SPARC and
Intel x86 microprocessor-based architectures. A layered architecture means
that over 90 percent of the Solaris source is platform independent.

Modular binary kernel — The Solaris kernel uses dynamic linking and
dynamic modules to divide the kernel into modular binaries. A core kernel
binary contains central facilities; device drivers, file systems, schedulers, and
some system calls are implemented as dynamically loadable modules. Conse-
quently, the Solaris kernel is delivered as a binary rather than source and
object, and kernel compiles are not required upon a change of parameters or
addition of new functionality.

Multithreaded process execution — A process can have more than one
thread of execution, and these threads can run concurrently on one or more
processors. Thus, a single process can use multiple processors for concurrent
thread execution, thereby using multiprocessor platforms more efficiently.

Multithreaded kernel — The Solaris kernel uses threads as the entity for
scheduling and execution: The kernel schedules interrupts and kernel ser-
vices as regular kernel threads. This key feature provides interrupt scalabil-
ity and low-latency interrupt response.

Previous UNIX implementations manipulated processor priority levels to
ensure exclusive access to critical interrupt data structures. As a result, the
inability of interrupt code to block led to poor scalability. Solaris provides
greater parallelism by scheduling interrupts as threads, which can then use
regular kernel locks to ensure exclusive access to data structures.

Fully preemptable kernel — The Solaris kernel is fully preemptable and
does not require manipulation of hardware interrupt levels to protect critical
data—locks synchronize access to kernel data. This means threads that need
to run can interrupt another, lower-priority thread; hence, low latency sched-
uling and low latency interrupt dispatch become possible. For example, a pro-
cess waking up after sleeping for a disk I/O can be scheduled immediately,

ﬁ%

ﬁ

*@%

é chpt_intro.fm Page 9 Friday, August 25, 2000 1:23 PM

a

Key Differentiators 9

rather than waiting until the scheduler runs. Additionally, by not raising pri-
ority levels and blocking interrupts, the system need not periodically sus-
pend activity during interrupt handling, so system resources are used more
efficiently.

¢ Support for multiple schedulers — Solaris provides a configurable sched-
uler environment. Multiple schedulers can operate concurrently, each with its
own scheduling algorithms and priority levels. Schedulers are supplied as
kernel modules and are dynamically loaded into the operating system. Solaris
offers a table-driven, usage-decayed, timesharing user scheduler (TS); a win-
dow system optimized timeshare scheduler (IA); and a real-time fixed prior-
ity scheduler (RT). An optional fair-share scheduler class can be loaded with
the Solaris Resource Manager package.

¢ Support for multiple file systems — Solaris provides a virtual file system
(VFS) framework that allows multiple file systems to be configured into the
system. The framework implements several disk-based file systems (UNIX
File System, MS-DOS file system, CD-ROM file system, etc.) and the net-
work file system (NFS V2 and V3). The virtual file system framework also
implements pseudo file systems, including the process file system, procfs, a
file system that abstracts processes as files. The virtual file system frame-
work is integrated with the virtual memory system to provide dynamic file
system caching that uses available free memory as a file system cache.

¢ Processor partitioning and binding — Special facilities allow fine-grained
processor control, including binding processes to processors. Processors can be
configured into scheduling groups to partition system resources.

¢ Demand-paged virtual memory system — This feature allows systems to
load applications on demand, rather than loading whole executables or
library images into memory. Demand-paging speeds up application startup
and potentially reduces memory footprint.

¢ Modular virtual memory system — The virtual memory system separates
virtual memory functions into distinct layers; the address space layer, seg-
ment drivers, and hardware-specific components are consolidated into a hard-
ware address translation (HAT) layer. Segment drivers can abstract memory
as files, and files can be memory-mapped into an address space. Segment
drivers enable different abstractions, including physical memory and devices,
to appear in an address space.

¢ Modular device I/O system — Dynamically loadable device and bus driv-
ers allow a hierarchy of buses and devices to be installed and configured. A
device driver interface (DDI) shields device drivers from platform-specific
infrastructure, thus maximizing portability of device drivers.

¢ Integrated networking — With the data link provider interface (DLPI),
multiple concurrent network interfaces can be configured, and a variety of
different protocols—including Ethernet, X.25, SDLC, ISDN, FDDI, token bus,
bi-sync, and other datalink-level protocols—can be configured upon them.

*@%

4~ 4

é chpt_intro.fm Page 10 Friday, August 25,2000 1:23 PM

a

10

1.3

An Introduction to Solaris

¢ Integrated Internet protocol — Solaris implements TCP/IP by use of the
DLPI interfaces.

¢ Real-time architecture — The Solaris kernel was designed and imple-
mented to provide real-time capabilities. The combination of the preemptive
kernel, kernel interrupts as threads, fixed priority scheduling, high-resolu-
tion timers, and fine-grained processor control makes Solaris an ideal envi-
ronment for real-time applications.

The differentiators listed above represent many innovative features integrated in
the Solaris kernel. In the remaining chapters, we closely examine the core mod-
ules and major subsystems of the kernel.

Kernel Overview

The Solaris kernel is the core of Solaris. It manages the system hardware
resources and provides an execution environment for user programs. The Solaris
kernel supports an environment in which multiple programs can execute simulta-
neously. The primary functions of the kernel can be divided into two major catego-
ries: managing the hardware by allocating its resources among the programs
running on it; and supplying a set of system services for those programs to use.

The Solaris kernel, like that of other operating systems implementations, pro-
vides a virtual machine environment that shields programs from the underlying
hardware and allows multiple programs to execute concurrently on the hardware
platform. Each program has its own virtual machine environment, with an execu-
tion context and state.

The basic unit that provides a program’s environment is known as a process; it
contains a virtual memory environment that is insulated from other processes on
the system. Each Solaris process can have one or more threads of execution that
share the virtual memory environment of the process, and each thread in effect
executes concurrently within the process’s environment. The Solaris kernel sched-
uler manages the execution of these threads (as opposed to management by sched-
uling processes) by transparently time-slicing them onto one or more processors.
The threads of execution start and stop executing as they are moved on and off the
processors, but the user program is unaware of this. Each time a thread is moved
off a processor, its complete execution environment (program counter, stack point-
ers, registers, etc.) is saved, so when it is later rescheduled onto a processor, its
environment can be restored and execution can resume. Processes and scheduling
are covered in detail in Part 3 of this book.

The kernel provides mechanisms to access operating system services, such as
file I/0, networking, process and thread creation and termination, process control
and signaling, process memory management, and interprocess communication. A
process accesses these kernel services through the use of system calls. System calls

ﬁ%

ﬁ

&

é chpt_intro.fm Page 11 Friday, August 25,2000 1:23 PM

a

Kernel Overview 11

are programming interfaces through which the operating system is entered so that
the kernel can perform work on behalf of the calling thread.

1.3.1 Solaris Kernel Architecture

The Solaris kernel is grouped into several key components and is implemented in a
modular fashion. The key components of the Solaris kernel are described in the fol-
lowing list and illustrated in Figure 1.1.

System Call Interface — The system call interface allows user processes to
access kernel facilities. The system call layer consists of a common system
call handler, which vectors system calls into the appropriate kernel modules.

Process Execution and Scheduling — Process management provides
facilities for process creation, execution, management, and termination. The
scheduler implements the functions that divide the machine’s processor
resources among threads on the system. The scheduler allows different sched-
uling classes to be loaded for different behavior and scheduling requirements.

Memory Management — The virtual memory system manages mapping of
physical memory to user processes and the kernel. The Solaris memory man-
agement layer is divided into two layers: the common memory management
functions and the hardware-specific components. The hardware-specific com-
ponents are located in the hardware address translation (HAT) layer.

File Systems — Solaris implements a virtual file system framework, by
which multiple types of file system can be configured into the Solaris kernel
at the same time. Regular disk-based file systems, network file systems, and
pseudo file systems are implemented in the file system layer.

I/O Bus and Device Management — The Solaris I/O framework imple-
ments bus nexus node drivers (bus-specific architectural dependencies, e.g., a
PCI bus) and device drivers (a specific device on a bus, e.g., an Ethernet card)
as a hierarchy of modules, reflecting the physical layout of the bus/device
interconnect.

Kernel Facilities (Clocks, timers, etc.) — Central kernel facilities, includ-
ing regular clock interrupts, system timers, synchronization primitives, and
loadable module support.

Networking — TCP/IP protocol support and related facilities. The Solaris
networking subsystem is implemented as streams-based device drivers and
streams modules.

ﬁ

*@%

S chpt_intro.fm Page 12 Friday, August 25, 2000 1:23 PM

12 An Introduction to Solaris

] System Call Interface —

Q A 1}
TS
Virtual File System
RT Framework g::\l;iecles
1A
' Clocks &
. _S_H_R_ - UFS | NFS SPEC Timers
FS Callouts
Thread
aS:gedulmg Networking
Process >
Management
Bus and Device Drivers ;I'PC 7
Sockets
Hardware Address
Translation (HAT) SD | SSD
HARDWARE

Figure 1.1 Solaris Kernel Components

1.3.2 Modular Implementation

The Solaris kernel is implemented as a core set of operating system functions, with
additional kernel subsystems and services linked in as dynamically loadable mod-
ules. This implementation is facilitated by a module loading and kernel runtime
linker infrastructure, which allows kernel modules to be added to the operating
system either during boot or on demand while the system is running.

The Solaris 7 module framework supports seven types of loadable kernel mod-
ules: scheduler classes, file systems, loadable system calls, loaders for executable
file formats, streams modules, bus or device drivers, and miscellaneous modules.
Figure 1.2 shows the facilities contained in the core kernel and the various types of
kernel modules that implement the remainder of the Solaris kernel.

é chpt_intro.fm Page 13 Friday, August 25,2000 1:23 PM

Kernel Overview

& @

Core Kernel Module Module Examples
Types
Scheduler TS —Time Share
Classes RT - Real Time
IA — Interactive Class
SRM - Resource Manager Class
System Calls File UFS — UNIX File System
Scheduler :
Memory Mgmt Systems NFS — Network File System
Proc Mgmt _ i
VFS Framework PROCFS - Process File System
Kernel Locking Etc....
Clock & Timers
Interrupt Mgmt shmsys — System V Shared Memory
Boot & Startup Loadable
Trap Mgmt System semsys — Semaphores
CPU Mgmt Calls
msgsys — Messages
Other loadable system calls ...
Executable ELF — SVR4 Binary Format
Formats COFF - BSD Binary Format
Streams pipemod — Streams Pipes
Modules ,) o
Idterm — Terminal Line Disciplines
Other loadable streams modules ...
Misc NFSSRV — NFS Server
Modules —
IPC — Interprocess Communication
Other loadable kernel code ...
Device SBus — SBus Bus Controller
and
Bus PCI - PCI Bus Controller
Drivers sd - SCS! I/0 Devices
Many other devices ...

Figure 1.2 Core Kernel and Loadable Modules

&

é chpt_intro.fm Page 14 Friday, August 25,2000 1:23 PM

a

14

1.4

An Introduction to Solaris

Processes, Threads, and Scheduling

The Solaris kernel is multithreaded; that is, it is implemented with multiple
threads of execution to allow concurrency across multiple processors. This architec-
ture is a major departure from the traditional UNIX scheduling model. In Solaris,
threads in the kernel, or kernel threads, are the fundamental unit that is sched-
uled and dispatched onto processors. Threads allow multiple streams of execution
within a single virtual memory environment; consequently, switching execution
between threads is inexpensive because no virtual memory context switch is
required.

Threads are used for kernel-related tasks, for process execution, and for inter-
rupt handling. Within the kernel, multiple threads of execution share the kernel’s
environment. Processes also contain one or more threads, which share the virtual
memory environment of the process.

A process is an abstraction that contains the environment for a user program. It
consists of a virtual memory environment, resources for the program such as an
open file list, and at least one thread of execution. The virtual memory environ-
ment, open file list, and other components of the process environment are shared
by the threads within each process.

Within each process is a lightweight process, a virtual execution environment for
each kernel thread within a process. The lightweight process allows each kernel
thread within a process to make system calls independently of other kernel
threads within the same process. Without a lightweight process, only one system
call could be made at a time. Each time a system call is made by a thread, its regis-
ters are placed on a stack within the lightweight process. Upon return from a sys-
tem call, the system call return codes are placed in the lightweight process. Figure
1.3 shows the relationship between kernel threads, processes, and lightweight pro-
cesses.

ﬁ

*@%

é chpt_intro.fm Page 15 Friday, August 25,2000 1:23 PM

& _ t

Processes, Threads, and Scheduling 15

A mulithreaded process

S5 9

LWP LWP

Process LWP
kernel kernel || kernel
Kernel thread thread thread

The kernel dispatcher manages
run queues of runnable kernel
threads, and it schedules kernel
threads onto available processors
alccordlng to priority and scheduling
class

Kernel Management
Threads/Daemons

e.g., Memory Mgmt Thread I I . I

Figure 1.3 Kernel Threads, Processes, and Lightweight Processes

1.4.1 Two-Level Thread Model

Although it is relatively inexpensive to switch between multiple threads within a
process, it is still relatively expensive to create and destroy threads. In addition,
each kernel thread within a process requires a lightweight process containing a
stack that consumes kernel resources. For these reasons, an additional level of
thread management is implemented within each process to manage user threads,
as shown in Figure 1.4.

w5555 S

\

User threads are scheduled

~ ~
~

N Q ﬁ - onto LWPs so that they can
U execute.
P 7 / | N o
LwP LwpP
Process LWP
Kernel kernel kernel [| kernel
thread thread thread

Figure 1.4 Two-Level Thread Model

4~ 4

é chpt_intro.fm Page 16 Friday, August 25,2000 1:23 PM

a

16

An Introduction to Solaris

Solaris exposes user threads as the primary thread abstraction for multithreaded
programs. User threads are implemented in a thread library and can be created
and destroyed without kernel involvement. User threads are scheduled on and off
the lightweight processes. As a result, only a subset of the user threads is active at
any one time—those threads that are scheduled onto the lightweight processes.
The number of lightweight processes within the process affects the degree of paral-
lelism available to the user threads and is adjusted on-the-fly by the user thread
library

1.4.2 Global Process Priorities and Scheduling

The Solaris kernel implements a global thread priority model for kernel threads.
The kernel scheduler, or dispatcher, uses the model to select which kernel thread of
potentially many runnable kernel threads executes next. The kernel supports the
notion of preemption, allowing a better-priority thread to cause the preemption of a
running thread, such that the better- (higher) priority thread can execute. The ker-
nel itself is preemptable, an innovation providing for time-critical scheduling of
high-priority threads. There are 170 global priorities; numerically larger priority
values correspond to better thread priorities. The priority name space is parti-
tioned by different scheduling classes, as illustrated in Figure 1.5.

59 ~ - level-10
~ —
~ 160-169 interrupts
RT T = level-1
0
460 N
~
~ > 100
1S RN SYS)
-60 ~ 60
~ - 59
——
+60 ~
~
~N
1 ~ 0
-60 -

Figure 1.5 Global Thread Priorities

The Solaris dispatcher implements multiple scheduling classes, which allow differ-
ent scheduling policies to be applied to threads. The three primary scheduling
classes—TS (IA is an enhanced TS), SYS, and RT—shown in Figure 1.5 are
described below.

ﬁ%

ﬁ

*@%

é chpt_intro.fm Page 17 Friday, August 25,2000 1:23 PM

a

Interprocess Communication 17

1.5

e TS — The timeshare scheduling class is the default class for processes and all
the kernel threads within the process. It changes process priorities dynami-
cally according to recent processor usage in an attempt to evenly allocate pro-
cessor resources among the kernel threads in the system. Process priorities
and time quantums are calculated according to a timeshare scheduling table
at each clock tick, or during wakeup after sleeping for an I/O. The TS class
uses priority ranges 0 to 59.

e JTA — The interactive class is an enhanced TS class used by the desktop win-
dowing system to boost priority of threads within the window under focus. TA
shares the priority numeric range with the TS class.

e SYS — The system class is used by the kernel for kernel threads. Threads in
the system class are bound threads; that is, there is no time quantum—they
run until they block. The system class uses priorities 60 to 99.

e RT — The realtime class implements fixed priority, fixed time quantum
scheduling. The realtime class uses priorities 100 to 159. Note that threads in
the RT class have a higher priority over kernel threads in the SYS class.

The interrupt priority levels shown in Figure 1.5 are not available for use by
anything other than interrupt threads. The intent of their positioning in the prior-
ity scheme is to guarantee that interrupt threads have priority over all other
threads in the system.

Interprocess Communication

Processes can communicate with each other by using one of several types of inter-
process communication (IPC). IPC allows information transfer or synchronization
to occur between processes. Solaris supports four different groups of interprocess
communication: basic IPC, System V IPC, POSIX IPC, and advanced Solaris IPC.

1.5.1 Traditional UNIX IPC

Solaris implements traditional IPC facilities such as local sockets and pipes. A
local socket is a network-like connection using the socket (2) system call to
directly connect two processes.

A pipe directly channels data flow from one process to another through an object
that operates like a file. Data is inserted at one end of the pipe and travels to the
receiving processes in a first-in, first-out order. Data is read and written on a pipe
with the standard file I/O system calls. Pipes are created with the pipe (2) sys-
tem call or by a special pipe device created in the file system with mknod (1) and
the standard file open (2) system call.

ﬁ%

ﬁ

*@%

é chpt_intro.fm Page 18 Friday, August 25,2000 1:23 PM

a

18

An Introduction to Solaris

1.5.2 System V IPC

Three types of IPC originally developed for System V UNIX have become standard
across all UNIX implementations: shared memory, message passing, and sema-
phores. These facilities provide the common IPC mechanism used by the majority
of applications today.

e System V Shared Memory — Processes can create a segment of shared
memory. Changes within the area of shared memory are immediately avail-
able to other processes that attach to the same shared memory segment.

e System V Message Queues — A message queue is a list of messages with a
head and a tail. Messages are placed on the tail of the queue and are received
on the head. Each messages contains a 32-bit type value, followed by a data
payload.

e System V Semaphores — Semaphores are integer-valued objects that sup-
port two atomic operations: increment or decrement the value of the integer.
Processes can sleep on semaphores that are greater than zero, then can be
awakened when the value reaches zero.

1.5.3 POSIX IPC

The POSIX IPC facilities are similar in functionality to System V IPC but are
abstracted on top of memory mapped files. The POSIX library routines are called
by a program to create a new semaphore, shared memory segment, or message
queue using the Solaris file I/O system calls (open(2), read(2), mmap(2), etc.).
Internally in the POSIX library, the IPC objects exist as files. The object type
exported to the program through the POSIX interfaces is handled within the
library routines.

1.5.4 Advanced Solaris IPC

A new, fast, lightweight mechanism for calling procedures between processes is
available in Solaris: doors. Doors are a low-latency method of invoking a procedure
in local process. A door server contains a thread that sleeps, waiting for an invoca-
tion from the door client. A client makes a call to the server through the door, along
with a small (16 Kbyte) payload. When the call is made from a door client to a door
server, scheduling control is passed directly to the thread in the door server. Once a
door server has finished handling the request, it passes control and response back
to the calling thread. The scheduling control allows ultra-low-latency turnaround
because the client does not need to wait for the server thread to be scheduled to
complete the request.

ﬁ

*@%

é chpt_intro.fm Page 19 Friday, August 25, 2000 1:23 PM

a

Signals

1.6

Signals

1.7

UNIX systems have provided a process signaling mechanism from the earliest
implementations. The signal facility provides a means to interrupt a process or
thread within a process as a result of a specific event. The events that trigger sig-
nals can be directly related to the current instruction stream. Such signals,
referred to as synchronous signals, originate as hardware trap conditions arising
from illegal address references (segmentation violation), illegal math operations
(floating point exceptions), and the like.

The system also implements asynchronous signals, which result from an exter-
nal event not necessarily related to the current instruction stream. Examples of
asynchronous signals include job control signals and the sending of a signal from
one process or thread to another, for example, sending a kill signal to terminate a
process.

For each possible signal, a process can establish one of three possible signal dis-
positions, which define what action, if any, will be taken when the signal is
received. Most signals can be ignored, a signal can be caught and a process-spe-
cific signal handler invoked, or a process can permit the default action to be taken.
Every signal has a predefined default action, for example, terminate the process.
Solaris provides a set of programming interfaces that allow signals to be masked
or a specific signal handler to be installed.

The traditional signal model was built on the concept of a process having a sin-
gle execution stream at any time. The Solaris kernel’s multithreaded process archi-
tecture allows for multiple threads of execution within a process, meaning that a
signal can be directed to specific thread. The disposition and handlers for signals
are process-wide; every thread in a multithreaded process has the same signal dis-
position and handlers. However, the Solaris model allows for signals to be masked
at the thread level, so different threads within the process can have different sig-
nals masked. (Masking is a means of blocking a signal from being delivered.)

Memory Management

The Solaris virtual memory (VM) system can be considered to be the core of the
operating system—it manages the system’s memory on behalf of the kernel and
processes. The main task of the VM system is to manage efficient allocation of the
system’s physical memory to the processes and kernel subsystems running within
the operating system. The VM system uses slower storage media (usually disk) to
store data that does not fit within the physical memory of the system, thus accom-
modating programs larger than the size of physical memory. The VM system is

ﬁ%

ﬁ

*@%

é chpt_intro.fm Page 20 Friday, August 25, 2000 1:23 PM

a

20

An Introduction to Solaris

what keeps the most frequently used portions within physical memory and the
lesser-used portions on the slower secondary storage.

For processes, the VM system presents a simple linear range of memory, known
as an address space. Each address space is broken into several segments that rep-
resent mappings of the executable, heap space (general-purpose, process-allocated
memory), shared libraries, and a program stack. Each segment is divided into
equal-sized pieces of virtual memory, known as pages, and a hardware memory
management unit (MMU) manages the mapping of page-sized pieces of virtual
memory to physical memory. Figure 1.6 shows the relationship between an address
space, segments, the memory management unit, and physical memory.

MMU \
/
/
~ N /
/ = — - ~
Process ~ L —] -
Scratch / /
Memory L _ B
(Heap) Z ™~ , N // /
N
p % N N / /
rocess
Binary / \ / \ /
0000 N /
/ Virtual-to- PhA cal
, Virtual) Physical M ysica Physical
Process’s irua Page-sized Translation emory Memory
Linear Virtual Memory ; Tabl Pages
Pieces of aoles
Address Space Segments Virtual
Memory

Figure 1.6 Address Spaces, Segments, and Pages

The virtual memory system is implemented in a modular fashion. The components
that deal with physical memory management are mostly hardware platform spe-
cific. The platform-dependent portions are implemented in the hardware address
translation (HAT) layer.

1.7.1 Global Memory Allocation

The VM system implements demand paging. Pages of memory are allocated on
demand, as they are referenced, and hence portions of an executable or shared
library are allocated on demand. Loading pages of memory on demand dramati-
cally lowers the memory footprint and startup time of a process. When an area of

ﬁ%

ﬁ

*@%

é chpt_intro.fm Page 21 Friday, August 25,2000 1:23 PM

a

Files and File Systems 21

1.8

virtual memory is accessed, the hardware MMU raises an event to tell the kernel
that an access has occurred to an area of memory that does not have physical
memory mapped to it. This event is a page fault. The heap of a process is also allo-
cated in a similar way: initially, only virtual memory space is allocated to the pro-
cess. When memory is first referenced, a page fault occurs and memory is allocated
one page at a time.

The virtual memory system uses a global paging model that implements a sin-
gle global policy to manage the allocation of memory between processes. A scan-
ning algorithm calculates the least-used portion of the physical memory. A kernel
thread (the page scanner) scans memory in physical page order when the amount
of free memory falls below a preconfigured threshold. Pages that have not been
used recently are stolen and placed onto a free list for use by other processes.

1.7.2 Kernel Memory Management

The Solaris kernel requires memory for kernel instructions, data structures, and
caches. Most of the kernel’s memory is not pageable; that is, it is allocated from
physical memory which cannot be stolen by the page scanner. This characteristic
avoids deadlocks that could occur within the kernel if a kernel memory manage-
ment function caused a page fault while holding a lock for another critical
resource. The kernel cannot rely on the global paging used by processes, so it
implements its own memory allocation systems.

A core kernel memory allocator—the slab allocator—allocates memory for ker-
nel data structures. As the name suggests, the allocator subdivides large contigu-
ous areas of memory (slabs) into smaller chunks for data structures. Allocation
pools are organized so that like-sized objects are allocated from the same continu-
ous segments, thereby dramatically reducing fragmentation that could result from
continuous allocation and deallocation.

Files and File Systems

Solaris provides facilities for storage and management of data, as illustrated in
Figure 1.7. A file provides a container for data, a directory contains a number of
files, and a file system implements files and directories upon a device, typically a
storage medium of some type.

ﬁ

*@%

é chpt_intro.fm Page 22 Friday, August 25, 2000 1:23 PM

a

22

An Introduction to Solaris

File systems can be
mounted upon other
directories to extend
the hierarchy.

‘etc| ‘sbin| ‘bin‘ |dev‘ ’usr‘ ‘opt‘

‘passwd| ‘ Is |

Figure 1.7 Files Organized in a Hierarchy of Directories

A file system can be mounted on a branch of an existing file system to extend the
hierarchy. The hierarchy hides the mount so that it is transparent to users or
applications that traverse the tree.

Solaris implements several different types of files:

¢ Regular files store data within the file system.

¢ Special files represent a device driver. Reads and writes to special files are
handled by a device driver and translated into I/O of some type.

¢ Pipes are a special type of file that do not hold data but can be opened by two
different processes so that data can be passed between them.

e Hard links link to the data of other files within the same file system. With
hard links, the same data can have two different file names in the file system.

e Symbolic links point to other path names on any file system.

¢ Sockets in the file system enable local communication between two pro-
cesses.

1.8.1 File Descriptors and File System Calls

Processes interface with files through file-related system calls. The file-related sys-
tem calls identify files by two means: their path name in the file system and a file
descriptor. A file descriptor is an integer number identifying an open file within a
process. Each process has a table of open files, starting at file descriptor 0 and pro-
gressing upward as more files are opened. A file descriptor can be obtained with
the open () system call, which opens a file named by a path name and returns a
file descriptor identifying the open file.

fd = open("/etc/passwd", flag, mode) ;

Once a file has been opened, a file descriptor can be used for operations on the file.
The read(2) and write(2) operations provide basic file I/O, along with several
other advanced mechanisms for performing more complex operations. A file

ﬁ%

i

ﬁ

T

*@%

é chpt_intro.fm Page 23 Friday, August 25,2000 1:23 PM

a

Files and File Systems

descriptor is eventually closed by the close(2) system call or by the process’s exit.
By default, file descriptors 0, 1, and 2 are opened automatically by the C runtime
library and represent the standard input, standard output, and standard error
streams for a process.

1.8.2 The Virtual File System Framework

Solaris provides a framework under which multiple file system types are imple-
mented: the virtual file system framework. Earlier implementations of UNIX used
a single file system type for all of the mounted file systems; typically, the UFS file
system from BSD UNIX. The virtual file system framework, developed to enable
the network file system (NFS) to coexist with the UFS file system in SunOS 2.0,
became a standard part of System V in SVR4 and Solaris.

Each file system provides file abstractions in the standard hierarchical manner,
providing standard file access interfaces even if the underlying file system imple-
mentation varies. The file system framework allows almost any objects to be
abstracted as files and file systems. Some file systems store file data on stor-
age-based media, whereas other implementations abstract objects other than stor-
age as files. For example, the procfs file system abstracts the process tree, where
each file in the file system represents a process in the process tree. We can catego-
rize Solaris file systems into the following groups:

e Storage Based — Regular file systems that provide facilities for persistent
storage and management of data. The Solaris UFS and PC/DOS file systems
are examples.

¢ Network File Systems — File systems that provide files which appear to be
in a local directory structure but are stored on a remote network server; for
example, Sun’s network file system (NFS).

¢ Pseudo File Systems — File systems that present various abstractions as
files in a file system. The /proc pseudo file system represents the address
space of a process as a series of files.

The framework provides a single set of well-defined interfaces that are file system
independent; the implementation details of each file system are hidden behind
these interfaces. Two key objects represent these interfaces: the virtual file, or
vnode, and the virtual file system, or vfs objects. The vnode interfaces implement
file-related functions, and the vfs interfaces implement file system management
functions. The vnode and vfs interfaces call appropriate file system functions
depending on the type of file system being operated on. Figure 1.8 shows the file
system layers. File-related functions are initiated through a system call or from
another kernel subsystem and are directed to the appropriate file system via the
vnode/vfs layer.

*@%

é chpt_intro.fm Page 24 Friday, August 25,2000 1:23 PM

24

An Introduction to Solaris

VNODE OPERATIONS VFS OPERATIONS
o bl P = e [il B vl B [ol = =515 |
slolalslalElEl= |5 =828 21518 (%
AR RN REACR AN
Sl |o|luolE|lSg|a |3]|lu|wu |~]|O g%ﬁ%

System Call Interface

VFS: File-System-Independent Layer (VFS & VNODE INTERFACES)

UFS PCFS HSFS VxFS QFS NFS | PROCFS

Table 1-2 summarizes the major file system types that are implemented in Solaris.

:
)

:

)

Y

-

Figure 1.8 VFS/Vnode Architecture

Table 1-2 File Systems Available in Solaris File System Framework

File Type Device Description
System

ufs Regular | Disk UNIX Fast File system, default in
Solaris

pcfs Regular | Disk MS-DOS file system

hsfs Regular | Disk High Sierra file system (CD-ROM)

tmpfs Regular | Memory Uses memory and swap

nfs Pseudo | Network Network file system

cachefs Pseudo | File system Uses a local disk as cache for another
NFS file system

autofs Pseudo | File system Uses a dynamic layout to mount
other file systems

specfs Pseudo | Device Drivers | File system for the /dev devices

procfs Pseudo | Kernel /proc file system representing pro-
cesses

ﬁ%

4

T

*@%

é chpt_intro.fm Page 25 Friday, August 25,2000 1:23 PM

a

1/0 Architecture

Table 1-2 File Systems Available in Solaris File System Framework (Continued)

File Type Device Description
System
sockfs Pseudo | Network File system of socket connections
fdfs Pseudo | File Descriptors | Allows a process to see its open files
in /dev/£fd
fifofs Pseudo | Files FIFO file system

1.9 1/0 Architecture

Traditional UNIX implements kernel-resident device drivers to interface with
hardware devices. The device driver manages data transfer and registers I/O and
handles device hardware interrupts. A device driver typically has to know inti-
mate details about the hardware device and the layout of buses to which the device
is connected. Solaris extends traditional device driver management functions by
using separate drivers for devices and buses: a device driver controls a device’s
hardware, and a bus nexus driver controls and translates data between two differ-
ent types of buses.

Solaris organizes I/O devices in a hierarchy of bus nexus and instances of
devices, according to the physical connection hierarchy of the devices. The hierar-
chy shown in Figure 1.9 represents a typical Solaris device tree.

root
nexus node
, | - System Bus
pcmeia pci eisa
nexus node nexus node nexus node
| [} — PCI Bus
serial modem ethernet ctir scsictir | SCSI Host Adapter
device node device node nexus node | Nexus Driver
I | <—— SCSIBus
sd0 sd 0
device node | ® ® | device node

SCSiI Device Driver (sd)

Figure 1.9 The Solaris Device Tree

*@%

4~ 4

é chpt_intro.fm Page 26 Friday, August 25,2000 1:23 PM

a

26

An Introduction to Solaris

Each bus connects to another bus through a bus nexus. In our example, nexus
drivers are represented by the PCI, EISA, PCMCIA, and SCSI nodes. The SCSI
host adapter is a bus nexus bridging the PCI and SCSI bus it controls, underneath
which the SCSI disk (sd) device driver implements device nodes for each disk on
the SCSI chain.

The Solaris device driver interface (DDI) hides the implementation specifics of
the platform and bus hierarchy from the device drivers. The DDI provides inter-
faces for registering interrupts, mapping registers, and accessing DMA memory. In
that way, the kernel can interface with the device.

Device drivers are implemented as loadable modules, that is, as separate bina-
ries containing driver code. Device drivers are loaded automatically the first time
their device is accessed.

ﬁ

*@%

