
75

T H R E E
3

RM-ODP ARCHITECT’S PRIMER

In this introductory chapter to the Reference Model of Open Distributed Process-
ing (RM-ODP), highlights of RM-ODP are discussed. This chapter introduces the
motivation for RM-ODP, and discusses why the architect should consider its use
in architecting a system. Following chapters will discuss these topics in more
depth.

This chapter discusses:

◗ More about RM-ODP for an architect

◗ Overview of RM-ODP architecting techniques

◗ How to use RM-ODP in creating an architecture specification

◗ How RM-ODP relates to a distributed processing system and to an
architecture

◗ What knowledge is prerequisite

3.1 MORE ABOUT RM-ODP

RM-ODP is an internationally agreed-upon object-based architecture standard for
use in architecting distributed systems. The standard provides mechanisms to
architect distributed processing software systems and distributed information, and
to support the integration and interoperation of applications in a reliable and con-

ch03.fm Page 75 Wednesday, September 6, 2000 4:18 PM

76 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

sistent manner, across a heterogeneity of enterprise rules, software, protocols, pro-
gramming languages, component-based frameworks, computers, and networks.
RM-ODP provides a rich, precisely defined set of distributed processing concepts
for architecting systems that depend upon distributed processing, as well as a rich
set of techniques to use in specifying the architecture.

RM-ODP provides:

◗ A guide for architects to specify distributed software systems; this is based on
object modeling, which is relevant to the practices of systems architects

◗ A set of precise concepts and structuring rules used for development of a sys-
tem specification

◗ A set of separate interrelated viewpoint specifications used for specification of
open distributed systems

◗ A system conformance testing framework

◗ A distribution transparency framework

◗ A set of functions specific to the system infrastructure that supports the capa-
bilities of the distribution transparencies

◗ An overall framework for development of additional standards under the RM-
ODP initiative that are related to open distributed processing

A system can be an enterprise-wide system of systems, a large information
processing system, or a major component of another system, such as data. Any of
the rules of architecting apply to any such “system.”

Consider the example in Figure 3.1. With RM-ODP, all rules could apply to
the Data Broker component. Once specified, it becomes an object in the Org B
architecture specification. Once Org B is specified, it becomes an object in the
Enterprise architecture specification. These levels of abstraction and concepts of
composition and refinement are exceedingly important in RM-ODP and pervade
all aspects of architecting, as will be discussed later.

Capturing the needs of the stakeholders of the information processing sys-
tem in such a way as to reflect these needs into system requirements has long been
a problem in technology transfer of knowledge. That is, the stakeholders1 state
their requirements in a language particular to a functional or organizational
domain (e.g., finance). The system designers (system engineers, software engi-
neers, architects, implementers, and testers) discuss system capabilities in terms
of information technology language. Often these needs and capabilities are mis-
understood, due to differences in the language of discourse. RM-ODP facilitates
communication by capturing, in its enterprise model, aspects particular to an
enterprise. Additionally, RM-ODP provides all of the concepts and rules needed
to transform these aspects into other models applicable to the system semantics,
information, and processing.

1. Stakeholder is a term used here to represent any customer, user, owner, administrator, acquisition
authority, or program manager.

ch03.fm Page 76 Wednesday, September 6, 2000 4:18 PM

3.1 MORE ABOUT RM-ODP 77

RM-ODP describes how to capture the needs of the stakeholders, how to
capture the information processing semantics, how to specify the components,
interactions, and constraints of the system, and how to select products and tech-
nologies to realize the system. These are all different areas of focus on the system.
These are all described in RM-ODP in a consistent manner so that decisions made
in one area of focus are reflected in other areas.

RM-ODP uses object-based constructs to help system architects specify
complex software-intensive architectures. But it goes further. It also provides pre-
cise rules to relate what the customer wants of a system, how the system should
function in support of the customer needs, and how to relate all of this to the cur-
rent technology and products of the day, through a set of viewpoints.

Figure 3.2 provides an overview of the concepts of RM-ODP and how they
relate. These are further discussed below.

An architecture specification is precise. It clearly defines all aspects (of
interest) of the distributed processing system. The specification generally results
from abstract concepts, at various levels of detail, which are themselves precisely
defined and constructed in accordance with well-defined rules.

RM-ODP provides terminology about distributed processing that has
achieved international agreement, consistently defined throughout the develop-
ment lifecycle. It also specifies the process of how to use the terms in an explicit,
precise manner so that the resulting specifications will be precise, understandable,
and consistent, not “intuitive.”

FIGURE 3.1 Different Kinds of “Systems”

2 minutes

Data Broker

Directory

Data Models

Relational

Web-based
MainframeLegacy

Workflow
Manager

WWW
Server

Decision
Tools

Mediator/
Translator

Distributed
Manager

Tools/
Server

Agent
Server

Data
Broker

Enterprise

External
Org

Org B

Data Broker Component

System: Enterprise

System: Single Organization System

System: Component

Incremental Architecture Specifications

Incremental Architecture Specifications

Broker

Org C

Org A
Org B

ch03.fm Page 77 Wednesday, September 6, 2000 4:18 PM

78 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

A warm fuzzy feeling is not a specification. The precise specification that
results can be refined into more and more detail, until a well-performed technical
solution is realized as derived (refined) from the business specification.

The RM-ODP rules are categorized into basic rules, object modeling rules,
structuring rules, specification rules, and conformance rules. The concepts and
rules form the foundation of RM-ODP. The use of this foundation provides a pro-
cess of architecting that comes along with precise terminology and rules that apply
throughout the entire architecting process.

The basic rules are used throughout all the specifications. They address dis-
tributed processing, information, data, and what constitutes an open distributed
processing (ODP) system. Further, these rules include abstraction, a very impor-
tant concept in any architecting endeavor.

The object model rules are used to construct the architecture, in terms of
objects, interfaces, state, and other elements. Each architecture specification is
constructed in terms of an object-based model.

The structuring rules are used along with the object model and basic rules.
They include how to address distribution, what constitutes a contract, what consti-
tutes a policy, what is a group of objects, how to describe the behavior of a binding
between interfaces, and so forth. These are the “hows” of a specification, based in
object terminology and extended distributed processing terminology.

FIGURE 3.2 Overview of RM-ODP Concepts

Enterprise
Viewpoint
Language

Information
Viewpoint
Language

Computational
Viewpoint
Language

Engineering
Viewpoint
Language

Technology
Viewpoint
Language

Used By

Results in an
Architecture
Specification

Provides a Process of Architecting

Foundation

ODP Terminology

Object Modeling Concepts

Conformance and Consistency Rules

Specification Rules Structuring Rules

Formal Language Base

Formalizes

ch03.fm Page 78 Wednesday, September 6, 2000 4:18 PM

3.1 MORE ABOUT RM-ODP 79

The specification rules are used to provide a consistent set of viewpoint
specifications. The rules discuss how to compose, what a composition and com-
ponent are, and how they are related. Further, these rules address how to specify
behavior, interface signature, binding, and so forth.

Conformance rules discuss the conformance testing process and the points
where conformance testing can occur. These apply throughout the viewpoint spec-
ifications as well.

In principle, one can create a specification of a system by taking a single
view of the system. Often, though, the system is large and complex. The result can
be a system description that is too complex to accomplish and too cluttered to
understand. One of the key uses of RM-ODP is to address the architecture of a sys-
tem from separate aspects of concern, called viewpoints. RM-ODP provides the
ability to separate business application functionality from distributed system com-
plexity, and distributed system complexity from choices of technology and prod-
ucts. This is accomplished by the use of the RM-ODP viewpoints, in conjunction
with the rules discussed above. That is, viewpoints separate the areas of concern
of the system into manageable parts to specify the architecture. The RM-ODP
viewpoints fully capture an architecture specification of a system.

RM-ODP provides this separation of concerns of a system into five view-
points: enterprise, information, computational, engineering, and technology. Each
viewpoint captures certain concerns about the entire system from that viewpoint.
Each of the viewpoints addresses certain aspects of distributed processing: how
the user uses the system, how the policies of the organization affect the function-
ing of the system, how the designer selects current technology, how the tester
ensures a correct implementation to the specification, and so forth.

The viewpoints are not layered. No viewpoint is more important than any
other. They all provide a view of the same system, but each is focused on a differ-
ent aspect of the system. These viewpoints are separate, but interrelated and con-
sistent. Each viewpoint is defined in terms of a language, with defined concepts
and structuring rules pertinent to that viewpoint language, all founded on an object
model. An overview of the viewpoints and their purposes is shown in Figure 3.3.

FIGURE 3.3 RM-ODP Viewpoints

RM-ODP
Enterprise
Viewpoint

Business
Perspective

Information
Viewpoint

Semantics and
Information
Perspective

Computational
Viewpoint

System
Functionality

Technology
Viewpoint

Technology
& Products

Engineering
Viewpoint

System
Distribution

ch03.fm Page 79 Wednesday, September 6, 2000 4:18 PM

80 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

RM-ODP facilitates communications with stakeholders and those involved
in creating the system. The domain-specific needs are related to the elements of
RM-ODP, such as a hospital (domain-specific) is a community (RM-ODP enter-
prise concept). The architect then uses the concepts of RM-ODP (community) and
their relationships to other concepts to create an open specification that uses a
well-defined distributed processing language to communicate exactly what is
wanted. The problem of “what I meant was…” versus “what you understood
was…” goes away. The resultant architecture specification is clear to all stake-
holders. Further, because it has been so precisely defined, parts of the architecture
specification can be reused as an architecture or design pattern. Parts of the work-
ing system can also be reused as plug-in components (or subsystems). All of these
are doable because of the use of precisely defined “open” constructs, with well-
defined terminology, and rules to explicitly define the system.

RM-ODP is one of the hallmark standards of the International Organiza-
tion for Standardization (ISO) and the International Telecommunications
Union (ITU). It is a foundation for any distributed processing system
architecture.

Creating a standard such as RM-ODP is an international accomplishment.
Developing shared terminology and ideas for what needs to be specified (such
as partitioning the work of architecting into five viewpoints) is a theoretical idea
that can be very powerful when used, but that use is not as simple as picking up
an editing tool and “doing it.” The emphasis here is on what needs to be accom-
plished in order to build an architecture specification. RM-ODP provides a sys-
tematic methodology for gathering knowledge from a variety of stakeholders
and information technologists. This is accomplished using the viewpoints. For
engineered systems, this can include users, operators, developers, and maintain-
ers. For service industries, this can include not only operators, developers, main-
tainers, but domain-specific users such as patients, teachers, students, and
doctors in the medical domain.

The RM-ODP concepts are not only precisely defined but also general. As
such they are also abstract. They need to be understood in terms of the process of
architecting and distributed processing. They do “work,” but only if a talented
software engineering effort (hopefully supported by good tools) is applied. The
positive side is that the concepts are already defined for use, the architect does not
need to redefine them first, and the concepts allow for higher precision in a spec-
ification—which is what architecting is about.

ch03.fm Page 80 Wednesday, September 6, 2000 4:18 PM

3.2 RM-ODP CONCEPTS AND TECHNIQUES FOR USE 81

3.2 RM-ODP CONCEPTS AND TECHNIQUES FOR USE

RM-ODP is a precisely defined reference model that can be used for any distrib-
uted processing system. Its proper use can help ensure a well-formed, precise
specification of an architecture, with consistent architectural concepts. Because of
the rules and consistency, incremental additions to the system can be easily
inserted into the architecture specification, generating technological solutions that
are composable with the existing system. And this is generally a requirement by
the customer of the architect: cost savings, reduced time to market, incremental
evolution, and evolvability with emerging technology.

The concepts and techniques for specifying an architecture can be thought
of in terms of three fundamental parts:

◗ Techniques of specification (that can apply to many things, not just distributed
processing)

◗ The language of distributed processing

◗ The techniques of conformance testing

Architecture applies to many things, not just distributed processing systems.
The specification techniques defined in terms of a set of rules are general and can
actually apply to other things, such as how a heart works, or how a business is to
be organized. However, in order to apply the specification techniques, a language
of the area of interest is required. For example, the language of aorta valves, hyper-
tension, arteries, veins, and so forth applies to the functioning of a heart; but the
specification techniques can apply to whatever domain is of interest.

In RM-ODP, the language of distributed processing is defined. The view-
points are defined in terms of this language, to enable focusing in on small parts
of the topic (distributed processing) to create the specification. Because distrib-
uted processing pervades many business domains, relating the terms of distribu-
tion to those specific to the domain can aid the understanding of the architecture
specification, though this is not required. For example, “Healthy Hospital Busi-
ness Requirements” on page 58 deals with a “billing system,” a “patient agent,”
and so forth. In RM-ODP, these are “objects that assume a role.” Mapping the
RM-ODP terms to the hospital terms aids the understanding of the architecture
specification.

Keeping this in mind helps one to understand how all these foundational
aspects of RM-ODP work together to formulate an architecture specification of a
distributed processing system. Figure 3.4 provides a representation of how these
aspects are related.

ch03.fm Page 81 Wednesday, September 6, 2000 4:18 PM

82 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

Each of the concepts and techniques defined by RM-ODP are covered in this
section, at a high level. The remainder of this book covers these topics in more
depth.

3.2.1 CONCEPTS

A common ontology (the set of defined concepts and rules of structure) is
essential and powerful. It provides the power of clear communication. It
provides the power of clear specification for what needs to be captured
(such as interfaces). But using such precise terms and associated concepts
for structuring are also difficult because of the generality involved, and
therefore require skills in software engineering and abstract reasoning.

The terms are structured along the lines shown in Table 3.1 and are defined in the
remainder of the book. Hence, this table provides all the terms without the defini-
tion, at this point, to show what each category covers and precisely defines.

FIGURE 3.4 Relating RM-ODP Use of Concepts and Techniques

Architect

Specification Techniques

Language of
Distributed Processing

RM-ODP Viewpoints

Conformance

Language of a
Business

Language of a Heart
Viewpoints

Language of a Business
Organization

Viewpoints

System

Specification

Distributed Processing System
Architecture Specification

Applies to

Applies to

Applies to

Relates to

Uses

Results in

Testing

Uses

ch03.fm Page 82 Wednesday, September 6, 2000 4:18 PM

3.2 RM-ODP CONCEPTS AND TECHNIQUES FOR USE 83

TABLE 3.1 Concepts

CATEGORY PURPOSE CONCEPTS (TERMS)

Basic concepts Used throughout Distributed Processing, Open Distributed Processing,
ODP System, Information, Data, and Viewpoint

Basic
interpretation
and linguistic
concepts

Provide the concepts of
interpretation of the
models constructed from
the RM-ODP language

Entity, Proposition, Abstraction, Atomicity, System,
Architecture, Term, Sentence

Basic object
model concepts

Used in building the
architecture

Object, Environment, Action, Interface, Activity,
Behavior, State, Communication, Location in space,
Location in time, Interaction point

Specification
concepts

Used across all the
viewpoint languages to
provide a consistent set of
specifications from each
viewpoint; Forms a part of
the overall architecture
specification

Composition, Decomposition, Composite object,
Behavioral compatibility, Refinement, Trace, Type, Class,
Subtype/supertype, Subclass/superclass, Template,
Interface signature, Instantiation, Role, Creation,
Introduction, Deletion, Instance, Template type, Template
class, Derived class/base class, Invariant, Precondition,
Postcondition

Structuring
concepts

Used in conjunction with
the basic concepts, basic
interpretation concepts,
object model and
specification concepts to
provide viewpoint-
specific specifications;
Used to address
distribution

Group, Configuration, Domain, Subdomain, Epoch,
Reference point, Conformance point, Transparencies,
Contract, Quality of service, Environment contract,
Obligation, Permission, Prohibition, Policy, Persistence,
Isochronicity, Name, Identifier, Name space, Naming
context, Naming action, Naming domain, Naming graph,
Name resolution, Activity structure, Chain (of actions),
Thread, Joining action, Dividing action, Forking action,
Spawn action, Head action, Subactivity, Establishing
behavior, Enabled behavior, Contractual context, Liaison,
Terminating behavior, Causality, Binding behavior,
Binding, Binding precondition, Unbinding behavior,
Trading, Failure, Error, Fault, Stability, Application
management, Communication management, Management
information, Managed role, Managing role, Notification

Conformance Used for testing of
conformance

Conformance to ODP standards, Compliance,
Consistency, Correspondence, Testing, Reference points,
Programmatic reference point, Perceptual reference point,
Interworking reference point, Interchange reference point,
Change of configuration, Portability, Migratability,
Conformance testing process, Result of testing,
Implementer role, Tester role, Relation between reference
points

ch03.fm Page 83 Wednesday, September 6, 2000 4:18 PM

84 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

In addition, the five viewpoints include such terms as:

◗ Enterprise—objects, policy, purpose, scope, action, community, process, step,
and others

◗ Computational—objects, interaction, binding, signal, client, server, producer,
consumer, interface, and others

◗ Engineering—objects, interface, binding, communication, transparencies,
functions, channel, node, management, and others

◗ Information—objects, invariant schema, dynamic schema, static schema

◗ Technology—conformance points for testing

The terminology for use includes terms not only from RM-ODP but also
additional terms from the General Relationship Model (GRM) [ISO GRM, ITU-
GRM], which is another international standard. GRM provides a suite of concepts
that enhance and interrelate to those of RM-ODP. An example is a further expla-
nation and expansion of the term “invariant.” In addition, the new Enterprise
Viewpoint international standard [ISO-EntVP], not yet fully formalized, adds
terms for specifying a business, to include such terms as community, process, step,
and further expansion of other enterprise viewpoint terms.

3.2.2 SPECIFICATION RULES

The rules of specification include precision, abstraction, and composition. Preci-
sion means that something is well-defined, unambiguous, and consistent with
other definitions. This includes the business rules, the properties of the business,
the policies of the business, and the scope and objectives of the business. Precision
is about how well something is defined—not how well something is detailed with
attributes. At each level of detail, everything should be defined “precisely,”
whether the thing is the organization of a business, the details of an interface, or
the specifications of a billing system used by the business.

Abstraction is a process of simplifiying. It is a key principle of specification.
It provides a structure to a set of specifications that enhances understanding at
each level. It allows key aspects of something to be addressed at one level, ignor-
ing the details at a different level. Abstraction means that the customer does not
need to worry about a bunch of things irrelevant to the specification of the business
“language,” such as what information technology terms to use.

“One of the key principles of RM-ODP is abstraction. People sometimes
confuse the term abstraction with the common notion of being abstract or obtuse.
In actuality, the process of abstraction is anything but obtuse—it is specifically
designed to enhance, not frustrate, understanding. In RM-ODP, the purpose of
abstraction is to provide a logical structure to a set of specifications by dealing first
in the key aspects…and progressively pushing the rest to the lower levels of
abstraction…” [Kilov-99] That is, the customer can define the business in terms

ch03.fm Page 84 Wednesday, September 6, 2000 4:18 PM

3.2 RM-ODP CONCEPTS AND TECHNIQUES FOR USE 85

that enhance understanding. Enhanced understanding leads to a better architecture
specification and system solution. The business is specified in terms understand-
able by the customer (such as “the hospital must submit a bill to the insurance
company within 10 days”). The architect then takes the specification and further
refines it to a system specification (such as a component that performs the calcu-
lations of a bill, a constraint on the interface of the component that it must meet
the quality of service = 24 hours, or the interface binding to the insurance company
to provide the bill).

For example, at one level of abstraction, a hospital admitting procedure is
specified with respect to how it works with hospital billing and patient care. At a
more detailed level, the interfaces to the database are defined, the interfaces to the
patient records are defined, the manner of submitting the bill to the insurance com-
pany is defined, and so forth. Abstraction levels are progressively refined through
more and more levels of detail, until the system is finally fully specified. Since the
terms in RM-ODP are consistently defined, and since the rules of using the terms
are consistent, abstraction coupled with further refinements results in consistent
specifications.

All levels of abstraction need to be precisely defined. It is important to real-
ize that the higher levels of abstraction need to be more precisely defined
than the lower levels. The reason is that once imprecision sets in at a level
of abstraction, it then generally affects all lower levels of abstraction. [Kilov-
99] In the case of a business specification, it is exceedingly important to pre-
cisely define what the business rules are. Imprecision at this point will prob-
ably lead to a solution that is neither workable nor wanted by the customer.

A composition is a combination of entities that results in a new entity, at a
different level of abstraction. That is, a composition is a grouping of entities that
can be addressed as a single entity. One example of a composition is the collection
of all employees in a department. Another example is the collection of all “data-
base objects” in a “data store object.” The “data store object” might be specified
as an object at one level of abstraction, whereas each of the component “database
objects” are specified at a lower level of abstraction. Composition is important in
the business specification. A community can be a composition of other communi-
ties. They may be related in different ways, with cross-references between them.
One community may be a refinement of another, or perhaps a community may be
a specification for a community that is a refinement.

A relationship is “a collection of...objects together with an invariant refer-
ring to the properties of the...object.” [ISO GRIM] An invariant defines what must
be true during some timeframe of the relationship. For example, an invariant may
state that the role constraints of a client/server relationship of the data store object
are not violated. Hence the behavior of a relationship is defined by its invariants,
preconditions, and postconditions.

ch03.fm Page 85 Wednesday, September 6, 2000 4:18 PM

86 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

3.2.3 OBJECT MODEL

RM-ODP defines a specific object model upon which everything else is based.
This model is discussed in detail in “Essentials of the RM-ODP Object Model” on
page 183. An object represents an entity. An object state is a condition of the
object that determines the actions that object will next perform. This model is
somewhat different from some other object models today; it is more capable. For
example, in the object model for RM-ODP an object can have multiple interfaces.
This model underlies the concepts “composition” and “component.” An interface
is part of the object model. An interface is an abstraction of the behavior of an
object along with constraints. It includes a set of interactions.

3.2.4 VIEWPOINTS

Each of the five defined viewpoints is a form of abstraction, as discussed earlier.
A viewpoint discusses the concerns of interest in specific concepts, along with
structuring rules that apply to those concepts.

The following list provides the rules associated with the use of the RM-ODP
viewpoints. These are discussed later in this section.

◗ Each viewpoint defines a set of concepts and allowable rules of
structure

◗ Viewpoints are not layered
◗ Viewpoints address independent concerns
◗ Viewpoints are formal, founded on mathematical formal descrip-

tions of predicate calculus
◗ Consistency across the viewpoints is defined
◗ Enterprise, information, and computational viewpoints are inde-

pendent of distribution concerns
◗ Enterprise, information, computational, and engineering are inde-

pendent of technology choices
◗ Conformance reference points are defined
◗ Viewpoints are based on the RM-ODP object model
◗ RM-ODP specification rules apply to the viewpoint
◗ RM-ODP structuring rules apply
◗ Viewpoints can be nested
◗ Viewpoints can use multiple levels of abstraction and refinement
◗ Viewpoints can use composition and decomposition
◗ Not all viewpoints are required for a given specification
◗ Combinations of viewpoints can provide different views of a system
◗ Additional viewpoints can be added

ch03.fm Page 86 Wednesday, September 6, 2000 4:18 PM

3.2 RM-ODP CONCEPTS AND TECHNIQUES FOR USE 87

3.2.4.1 Synopsis

Enterprise Viewpoint. The enterprise viewpoint of RM-ODP takes the perspec-
tive of a business model. The enterprise models should be directly understandable
by stakeholders (such as managers and end users) in the business environment.
The enterprise viewpoint assures that the business needs are satisfied through the
architecture and provides a specification that enables validation of these assertions
with the end users.

This viewpoint is extremely useful to communicate the customer needs
with the architect. It provides far more precise descriptions than, say, a Unified
Modeling Language (UML) Use Case view. This viewpoint provides the cus-
tomer the ability to define a policy such as, for example, “the state regulation
policy for medical equipment has to be implemented in the system,” or “our air-
line’s policy is to overbook passenger seats to a maximum of 10 seats.” These
are “precisely” defined in the architecture. In UML, there is no concept of a
“policy,” though a policy can be represented as a class or a note or some other
non-uniform manner.

Further, this viewpoint enables a customer to require a subsystem to be
architected and implemented that will plug into an existing system. An example is
“I have a legacy system that needs to work in my new system. Architect a means
to do this.” Or, “Architect something that will allow me to get to all the different
databases in my system, and make it a part of my modernized system.” Of course,
it is the responsibility (and indeed the duty) of the developers to analyze and point
out the probable impact of such proposed features on the rest of the architecture
(e.g., greater complexity, cost).

This viewpoint can also be used for a subsystem part itself. Software tool
vendors, for example, need to determine the scope and objectives of their tools.
The parts that comprise a tool, coupled with their interactions (how that tool may
interact with another tool), and the policies that apply are all part of an enterprise
specification. This viewpoint sets the stage for further refinement of any software
subsystem.

The terms used in this viewpoint include community, actor role, artefact
role, purpose, scope, objectives, enterprise objects, interaction, process, task, pol-
icy, contract, environment, and environment contract.

Information Viewpoint. The information viewpoint defines the universe of dis-
course of the information system in two ways: the information content of the sys-
tem, and the information about the processing of the system (its behavior).

The first is from the perspective a database model. The information view-
point, in this case, is a logical representation of the data in the distributed system.

The second is from the perspective of the rules to be followed in the system,
such as policies specified by the stakeholders, and then throughout the system in
terms of how different components work together. For example, the information
viewpoint provides constructs to define constraints of all aspects of the system

ch03.fm Page 87 Wednesday, September 6, 2000 4:18 PM

88 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

(such as behavior), constraints defined by policy, rules of allowable changes in
state, things that must always be true (invariants), as well as quality attributes, and
information.

Examples of constraints on the system could be the policy of overbooking
airline seats, the interpretation of the policy on medical equipment, or the way two
components work together in the system. The information viewpoint also captures
the valid states of the objects. Finally, it captures the actions that are allowed to
change the state of an object.

The information viewpoint is very useful in capturing the semantics of the
operational system. It identifies schemata to do this. This viewpoint is an object-
based logical model of the information assets in the business and the constraints
on how these assets are processed and manipulated.

The terms used in this viewpoint include information objects, static schema,
dynamic schema, and invariant schema.

Computational Viewpoint. The computational viewpoint partitions the system
into functional modules that perform the capabilities of the system and are capable
of being distributed throughout the enterprise. The computational viewpoint takes
the perspective of a designer of application components and program interfaces.
This viewpoint is similar to many architecture representation models, such as the
logical model of UML, or the designer’s view from Zachman [Malveau].

The computational viewpoint captures the components and interface details,
without regard to distribution (which is addressed in the engineering viewpoint).
Therefore, the architect need not be concerned if the application is on a particular
server, or if the client must use a particular set of protocols to interact with the
server. Rather, it is the viewpoint on the functioning aspects of the system, not on
the distribution or implementation aspects.

In particular, this is where the software subsystem boundaries are specified
in terms of application program interfaces (APIs), however those subsystems are
distributed (as specified in the engineering viewpoint). Generally, these bound-
aries are the architectural controls that assure that the system structure will
embody the qualities of interoperability, portability, scalability, and distribution in
management of complexities that are appropriate to meet changing business
needs, and adaptability to incorporate evolving technology.

The terms used in this viewpoint include computational objects, interface,
interface signature, interaction, interaction signature, environment contract, pol-
icy, binding, operation type interface (client/server), stream interface, signal inter-
face, client, server, producer, consumer, initiator, responder, binding object, trader,
and others.

Engineering Viewpoint. The engineering viewpoint exposes the distributed
nature of the system, and provides standard definitions that enable abstract
descriptions of engineering constraints. These engineering objects are capable of
defining the characteristics of all forms of distributed infrastructure, including

ch03.fm Page 88 Wednesday, September 6, 2000 4:18 PM

3.2 RM-ODP CONCEPTS AND TECHNIQUES FOR USE 89

remote procedure calls, video teleconferencing, client/server communication,
asynchronous interfaces for signaling, mobility of software and interfaces, multi-
media, services providing fault tolerance, and so forth.

One of the engineering objects that RM-ODP defines is a binder, which
forms the binding between interfaces. Another is a channel, composed of objects,
one of which is the binder, and forms the full communication mechanism to tie
together object interfaces. The engineering objects are capable of defining the
characteristics of all forms of distributed infrastructure, including remote proce-
dure calls, screening data interfaces, and asynchronous interfaces for signaling.

The perspective of the engineering viewpoint is similar to that of an operat-
ing system engineer or a networking engineer who is familiar with “thin clients”
or “fat clients,” Web servers, communication protocol stacks, and allocation issues
that are necessary to define the distributed processing solutions for the distributed
system.

The terms used in this viewpoint include engineering objects, interface ref-
erence, binding, channel, node, cluster, capsule, stub, binder, protocol, interceptor,
relocator, migrator, checkpoint/recovery, failure, storage, node management, rep-
licator, interface, policy, schema, and transparency.

Technology Viewpoint. The technology viewpoint serves two very important
missions: to describe where to apply the technologies and products of choice, and
to allow the conformance testing of the system implementation against its archi-
tectural specification. The technology viewpoint defines the mappings between
the architected objects and interfaces to specific standards, technologies, product
selections, and required developed code. The architecture specification provides
the selection criteria for choices in this viewpoint.

The viewpoint defines four types of reference points that can be used as con-
formance test points. The reference point is a place where there is a set of inter-
faces. The four reference points for use as conformance test points are
programmatic reference point, perceptual reference point, interworking reference
point, and interchange reference point. Each conformance point defines the infor-
mation to be observed during test, and how that information traces back through
the architecture specification.

The perspective of this viewpoint is similar to that of an implementer who
is familiar with the Web browser, the Web server, the communication between the
two, the use of Enterprise JavaBeans™, network protocol standards, and other
products to configure the information system.

3.2.4.2 Viewpoint Rules

The terms are not defined here, nor are the structuring rules that apply. Viewpoints
are addressed in more depth in Chapter 6, “Separation of Concerns: Using RM-
ODP Viewpoints.” For now, let us say that viewpoints focus on a set of issues or
concerns about a system, while reserving other concerns for later consideration.

ch03.fm Page 89 Wednesday, September 6, 2000 4:18 PM

90 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

Viewpoints are not layered, address independent concerns, are consistent, and
support conformance testing. Each viewpoint is concerned with certain aspects
of the system. Viewpoints are not layered; no one viewpoint depends directly upon
any other, nor is one viewpoint used before another. They are independent in that
they address different aspects of distributed processing.

However, they are also coordinated and as such do not stand alone. There
are correspondences among the concepts of the different viewpoints that lead to
consistency of the viewpoint specifications. An interface in one viewpoint, for
example, corresponds to an interface in another viewpoint, but each addresses dif-
ferent considerations.

The information viewpoint, for example, captures the behavior of the sys-
tem. Behavior affects everything. So the information viewpoint is coordinated
with the remaining viewpoints. But it stands alone in the sense that the behavior is
defined in that viewpoint alone. How the behavior is implemented, or how the
behavior affects an interaction in a computational viewpoint, is where the coordi-
nation comes into play. That coordination is specified as part of the consistency
rules, and correspondences among the parts of each viewpoint.

Further, all five RM-ODP viewpoints are co-equal in the sense that they each
provide a complete model of the distributed system that is object based and corre-
sponds to the other viewpoints. The RM-ODP viewpoints provide separation of
concerns that divides the business and logical functionality of the system from the
distributed computing and commercial technology decisions of the architecture.

With these viewpoints, a well-formed architectural specification can be
created, which can result in a well-formed working system that can be tested for
conformance.

Viewpoint Foundations. There are five viewpoint foundations: RM-ODP object
model, specification rules, structuring rules, distribution independence, and tech-
nology independence. Each of these RM-ODP viewpoints is object based, based
on the RM-ODP object model. They provide a complete model of the system from
a given perspective of distributed processing (e.g., business perspective, behav-
ioral perspective, engineering perspective).

Each viewpoint language consists of a small number of well-defined terms,
based on formalisms whose detailed understanding is unnecessary. The language
has no mathematical notion; English text can be used in relation to the viewpoint
concepts. However, the RM-ODP concepts have been formally described in a
mathematical language, to ensure a well-formed foundation. This has been
accomplished, and need not be understood or used by the customer or architect.
What this means is that statements of consistency and conformance are assured;
they are not merely intuitive. Just knowing there is precision and a mathematical
foundation is conducive to doing the analysis, consistency mapping, and conform-
ance testing offered by RM-ODP.

All the viewpoints make use of, and are affected by, the specification and
structuring rules. All the viewpoints make use of not only viewpoint-specific
ontologies, but also the distributed processing ontology. That is, they are not just

ch03.fm Page 90 Wednesday, September 6, 2000 4:18 PM

3.2 RM-ODP CONCEPTS AND TECHNIQUES FOR USE 91

terms to use in a specification; they include terms to use in conjunction with all
the RM-ODP specification rules. All the viewpoints require engineering skills.
Stakeholders work with the architect in using the enterprise and information view-
points to specify the business. The stakeholder defines business objectives and the
architect relates the business terms to RM-ODP concepts. For example, a stake-
holder in the hospital business states a business objective “to manage patient
admission,” and a policy statement that “all emergency patients must be admit-
ted.” The architect relates these to RM-ODP concepts and rules of expression: an
admission role—to manage patient admission; a policy statement—the admission
role is obligated to admit all emergency patients. More on this topic is covered in
Chapter 12, “Enterprise Business Specification.”

The concerns of the enterprise viewpoint are from a scope and objectives
perspective. This concern can apply to a business (such as the Healthy Hospital
business of Chapter 2), or to a software-component specification, such as a data
broker. The information viewpoint captures the behavior of the system. The com-
putational viewpoint captures the components and their interactions, as affected
by the behavior specified in the information viewpoint. Notice that none of these
concerns addresses how the software is hosted on computers, how a network is
used, or if all the software is co-resident on the same computer. These concerns of
distribution come into focus in the engineering viewpoint, where all such consid-
erations are specified. But the engineering viewpoint is not concerned with a
choice of technologies, such as which database vendor is used (e.g., Oracle),
which data broker is used (e.g., Enterworks™ Virtual DB [VDB]), which Web
browser is used, which type of network is used, and so forth. These choices come
into play in the technology viewpoint. This is represented in Figure 3.5.

The enterprise, information, computational, and engineering viewpoints are
independent of specific implementations. In other words, most of the architectural
specification is independent of the specific product selections used to implement
the system. This characteristic of RM-ODP provides three important capabilities:

1. The independence of the business and architecture specification from technol-
ogies allows evolving technologies to be incorporated into the system without
impacting the overall architectural constraints.

2. The architecture specification provides the criteria by which the product can
be selected.

3. The architecture specification can be created to be visionary, in which case as
products evolve and are included in the system, what has yet to be accom-
plished is known and defined in the architecture specification. This can yield
selection criteria for products that include consideration for the future. An
example of this very important point is a product that now provides visualiza-
tion of stock inventory, or a product that has emerged to provide fault toler-
ance. The architecture specification provides the criteria of how these products
must behave, how their interfaces must be used, and other criteria for how and
where to compose them into the system.

ch03.fm Page 91 Wednesday, September 6, 2000 4:18 PM

92 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

Viewpoints can be nested, can use multiple levels of abstraction, and use com-
position. In the process of using the viewpoints, the architect does not need to
fully use all concepts of a particular viewpoint before using another viewpoint.
In fact, this would not work. For example, the use of a low-bandwidth network
(determined in the engineering viewpoint) may require an additional object to
manage binding of interfaces (a computational viewpoint consideration). This,
in turn, may affect a quality of service statement in a policy (determined in the
enterprise viewpoint). What the architect does is begin, capture as much as is
known, soften constraints until more is known, and branch off to another view-
point to perhaps learn more about a particular aspect. The use of the viewpoints
is, in this sense, nested or iterative.

At any point in the use of the viewpoint, the architect can use any of the
viewpoints within that viewpoint, to better specify something. Or the architect can
use a subset of the viewpoints only sufficient to specify some part of the system.
Hence, the RM-ODP viewpoints are full viewpoints on a system, that can be used

FIGURE 3.5 Viewpoint Foundation

Enterprise
Viewpoint

Business
Perspective

Semantics and
Information
Perspective

System
Functionality

Technology
& Products

System
Distribution

Information
Viewpoint

Computational
Viewpoint

Technology
Viewpoint

Engineering
Viewpoint

D
is

tr
ib

ut
io

n
In

de
pe

nd
en

t

Im
pl

em
en

ta
ti

on
 I

nd
ep

en
de

nt

Ontology
Object ModelSpecification

Structuring
Rules

Foundation

Engineering

ch03.fm Page 92 Wednesday, September 6, 2000 4:18 PM

3.2 RM-ODP CONCEPTS AND TECHNIQUES FOR USE 93

recursively within or partially, according to the needs of the architect. Through the
consistency rules provided by RM-ODP, it all works together; it enables composi-
tion of architecture parts of the system, partial specification of a system, or a full
specification of a system.

For example, in the process of architecting a portion of the system, it may
become important to digress and define that portion of the system more fully. A
synopsis of one way the viewpoints could be nested, for use in specifying a busi-
ness, is shown in Table 3.2, all for a business specification that requires the use of
a common message transaction service (MTS).

An example of nested viewpoints may be seen in using the OMG Trader
specification. In the architecting of a system, the architect may discover that a
Trader is an appropriate component for use in the system. The architect does not
need to fully specify the Trader component since OMG and ISO [ISO-Trading]
have accomplished this. The architect need only identify its use within the context
of other components, and reference the Trading specification. If there are certain
behaviors that need to be addressed by the use of a particular vendor’s Trader
product, however, the architect needs to determine this technology viewpoint
choice, and abstract the behaviors into the remaining system specifications. Again,
this is both a nesting and iteration in the use of the viewpoints.

As another example, the Healthy Hospital example identified a hospital pol-
icy that affects the actions of the enterprise objects acting in their various roles
(e.g., admission agent role, billing agent role). The architect wants to further refine
the effect of the hospital policy on these actions. So the architect uses the compu-
tational viewpoint to better define the components and interactions, introducing a

TABLE 3.2 Nested Viewpoints Example

VIEWPOINT BUSINESS SPECIFICATION

Enterprise A required message transaction service to be used, as an
enterprise object, with interactions to other enterprise objects of
the business

Information Processing behavior that relates to the constraints about the MTS

Computational Functional system configuration of objects and interactions that
provide the business function using the MTS. More detail about
the message transaction service to be used

Engineering Distribution designs and distribution transparency mechanisms
for the MTS and its use

Technology Technology (e.g., OMG’s Messaging service coupled with the
Object Transaction Service), product (e.g., BEA’s Object
Transaction Server™ product)

ch03.fm Page 93 Wednesday, September 6, 2000 4:18 PM

94 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

new policy administrator object. The policy administrator object controls the
appropriate use of the data associated with each of the agents. How? Perhaps the
architect chooses to use a data broker that provides a single point of entry to all the
data sources, and associate the policy administrator with that component. Perhaps
the architect then wants to determine the distribution of the data broker and the
data sources, and even the technology choice, to better understand the behavior.
So the architect has drilled down on a particular aspect of the enterprise specifica-
tion to better understand the interworking and semantics of the system compo-
nents, and will then incorporate such knowledge into the information and
enterprise viewpoints. This example is shown in Figure 3.6.

As was discussed in Chapter 2, “RM-ODP Manager’s Primer,” the view-
points provide an approach for specifying the entire system, a part of the system
in an incremental approach, or a visionary target system. In the latter case, the
enterprise and information viewpoints will likely be used, and possibly the com-
putational viewpoint as well. Engineering and technology viewpoints provide a

FIGURE 3.6 Example Nesting and Iterating Viewpoint Use for Healthy Hospital

Technology
Viewpoint

Policy Admin: Code
Data Broker: Enterworks VDB

Database: Oracle

OmniConnect
SQL queries

Web Browser

HTTP
JDBC

Engineering
Viewpoint

Node
Node

Node

Policy
Admin

Data Broker

Schedules

User

Information
Viewpoint

Computational
Viewpoint

Policy
Template

Policy
Admin

Information
Viewpoint

Data Broker

Schedules
Admitting

Agent

Enterprise
Viewpoint

Information
Viewpoint

Hospital
Administrator

Policies

Admitting
Agent Schedules

ch03.fm Page 94 Wednesday, September 6, 2000 4:18 PM

3.2 RM-ODP CONCEPTS AND TECHNIQUES FOR USE 95

virtual machine, which must be implemented by available technologies. If these
are not yet in hand, the architect can still specify the visionary system, and then
that portion of the system that is implementable, using the engineering and tech-
nology viewpoints. As technology emerges, the architecture is in hand to specify
where that technology can be inserted with minimal impact. If the new technology
is completely unanticipated, the full architecture specification may need to be
revisited to ensure the technology meets the business needs, and does not
adversely affect the current architecture specification and system. Cost avoidance,
risk management, and schedule impact are all considerations at this point.

Not all viewpoints are required for a given specification. The architect does not
need to use all the viewpoints, or even all aspects of a viewpoint. The choice is up
to the architect to decide what it will take to provide a specification.

A prime example of this is the need to specify a business, the system, and
the placement of the system in the business. The details of the distribution of the
system and the technologies to use are perhaps left for some contractor to decide.
So the organization’s architect uses the enterprise, information, and parts of the
computational viewpoints to clearly define what is wanted in the system. This too
is a specification of the needs for a system. It is a method actually used in the cre-
ation of a service specification, or of a standard that is under the RM-ODP initia-
tive. It is a method that can be used to construct a “reference architecture,” which
is popular today.

Taking a look at a reference architecture and what it means may help eluci-
date the use of the enterprise, information, and computational viewpoints. A ref-
erence architecture can be considered a high-level system specification that
defines its overall target structure (components and relationships among them) in
a systematic, consistent manner. A reference architecture frames, or bounds,
choices, ensuring concepts and rules of structure are incorporated into all interme-
diate solutions, spiraling towards a target architecture. The essential difference
between a reference architecture and an architecture is that an architecture is a
more fully specified instance of a reference architecture. A reference architecture
defines the envisioned target architecture, without addressing engineering or tech-
nology viewpoint concerns. So a reference architecture specifies:

◗ Objectives and scope

◗ Information

◗ Processing

◗ Business constraints and policies over the system composition (and compo-
nents) and interactions

◗ Qualities of service (QoS)

◗ Distributed system objectives, without details of distribution

◗ Business objectives of incorporating previous (legacy) solutions

◗ Concepts and rules for business systems

ch03.fm Page 95 Wednesday, September 6, 2000 4:18 PM

96 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

◗ Decomposition into cooperating components and compositions

◗ Component relationships

◗ Delaying:

– Considerations of technologies and products

– Considerations of distribution

– Considerations of data

In essence, a reference architecture provides the structure and rules to be
used to define an incremental system solution. It is considered incremental
because the current technology choices may not, in fact, achieve all that is speci-
fied in the reference architecture, and may need to incrementally evolve to the
“target” or visionary solution.

A representation of a reference architecture is shown in Figure 3.7. It shows
that the RM-ODP enterprise, information, and computational viewpoints can be
used to provide a specification of a reference architecture.

Combinations of viewpoints provide specific views of a system. Each viewpoint
either enables a viewpoint specification to be created, or contributes to a specifi-
cation of multiple viewpoints. That is, sometimes several viewpoints are used to
provide a particular specification, such as a business specification that includes the
enterprise and information viewpoints.

Table 3.3 provides an overview of the viewpoints and the focus of concern
in that viewpoint. When used in accordance with the RM-ODP rules, it becomes
a viewpoint specification of the system, singly or in conjunction with another
viewpoint, as exemplified in the Specification column. Some combinations of
viewpoint uses result in commonplace views, such as a business specification, or
a data management specification. Other combinations are possible; it all depends
on the objective of the architect.

Reference
Architecture
Reference

Architecture

Technical
Drivers

Business
Rules

Previous
Solution
Systems

Influences

Cost, Risk,
Schedule

ComponentsInteractions

System
Conformance
Test Criteria

Architecture
Rules

Behavior

Business
Requirements

New Business
Requirements

User
Requirements

Incremental
System
SolutionIncremental

System
SolutionIncremental

System
Solution

Incremental
System
Solution

Enterprise + Information + Computational
Viewpoints

Engineering + Information + Technology
Viewpoints

Iterate for building upon system capabilities; iterate for lessons learned

Input

Spiral over time

Architecture
Concepts

FIGURE 3.7 Reference Architecture and RM-ODP Viewpoint Use

ch03.fm Page 96 Wednesday, September 6, 2000 4:18 PM

3.2 RM-ODP CONCEPTS AND TECHNIQUES FOR USE 97

TABLE 3.3 Viewpoint Concerns and Specifications

VIEWPOINT CONCERN SPECIFICATION

Enterprise Purpose, scope, policies Enterprise Specification

Information Semantics of processing, and
information

Information Specification

Computational Functional decomposition into
objects or components and their
interactions, and their behavior
and constraints

Computational Specification

Engineering Distribution and distributed
mechanisms, infrastructure,
distribution transparencies

Engineering Specification

Technology Technology, standards, products,
and code choices; conformance
test points

Technology Specification

SOME COMBINATIONS

Enterprise + Information Business requirements along with
behavior, and information

Business Specification

Computational + Information Application “virtual machine”:
Application, application
programming interfaces

Application Specification

Computational + Engineering +
Information

Distributed processing “virtual
machine”: allocation of software
to hardware, networks, etc.

Infrastructure and Distribution
Specification

Enterprise + Information +
Computational

Software component purpose,
scope, policies, behavior,
functional decomposition

Software Component or Standard
Specification

Enterprise + Information +
Computational + Engineering

Purpose, scope, policies, data,
data flows, data stores allocated
to computers

Data Management Specification

Engineering + Information +
Technology

Implementation, Evolution to
New Technologies, Incremental
Implementation

Incremental Specification

All Conformance testing Conformance Specification

ch03.fm Page 97 Wednesday, September 6, 2000 4:18 PM

98 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

As was shown in the Healthy Hospital example of Chapter 2, “RM-ODP
Manager’s Primer,” RM-ODP provides the means of specifying a system from a
business perspective. That is, RM-ODP provides the mechanisms to capture how
to realize the business requirements through a distributed processing system. This
is not an easy task for any architectural framework. Using RM-ODP also provides
the ability to capture business-related rules of engagement for the system. These
concepts are further discussed in Chapter 12, “Enterprise Business Specification.”
As an example, the computational viewpoint discusses the concept of an interface.
The rules associated with interface address different types of interfaces, how inter-
actions are captured in an interface, some of the semantics of the interface, how a
contract affects the interfacing (called a binding), and so forth. Perhaps this is all
the architect needs to specify for some part of the system. Hence, the architect uses
the computational and information viewpoints, and not all of the constructs in
them.

Additional viewpoints can be added. Sometimes it’s useful to view the entire
system from a particular capability, such as security. Some of today’s architecture
frameworks (such as Zachman [Zachman] and UML [UML-1.3]) contain “views”
of the system. However, the RM-ODP viewpoints are different in that they sepa-
rate the concerns to stakeholder and architecture aspects, not just capability
aspects. A capability is discussed in each of the RM-ODP viewpoints. For exam-
ple, one common view of a system is the “data” view. This view may be depicted
in a data flow diagram, representing the inputs and outputs of the data in the sys-
tem. In RM-ODP, the five viewpoints define the need for the data, the elements of
the data (the schema), the elements of the system that manipulate the data, the
behavior of these elements (the data business rules), how the data is distributed,
and how the data is managed by products or code. Another view of the system may
be a security view. In this case, all aspects of an enterprise-wide security capability
that exists in the system may be specified in a separate view. The RM-ODP set of
viewpoints is not closed so that additional viewpoints can be added as the needs
arise.

3.2.5 TRANSPARENCY

Finally, RM-ODP addresses what is called “distribution transparency.” There are
eight transparencies defined by RM-ODP. These eight transparencies are called
access, location, migration, relocation, persistence, transaction, failure, and repli-
cation. The reason RM-ODP calls the set of transparencies “distributed” is that
these transparencies hide the effects of distribution from the user, application
developer, or system developer. The transparency constructs of RM-ODP are
“orthogonal” in the sense that there is a separate set of defined constructs and con-
cepts associated with each transparency, and the transparencies can be used some-
what independently.

ch03.fm Page 98 Wednesday, September 6, 2000 4:18 PM

3.2 RM-ODP CONCEPTS AND TECHNIQUES FOR USE 99

However, once a transparency is “required,” the constructs and concepts are
intertwined with the mechanisms of the engineering viewpoint. That is, a transpar-
ency imposes constraints on the way the system works, focused on the engineering
viewpoint (the infrastructure). These constraints are defined by RM-ODP. For
example, if “failure” transparency is required, then the infrastructure needs to con-
trol what happens in the infrastructure, detect a failure, and set into motion activ-
ities that try to recover from the failure. All of this is done without knowledge of
or impact to the application or the rest of the system.

The eight RM-ODP distribution transparencies are described in Table 3.4,
from [RM-ODP-3].

TABLE 3.4 Distribution Transparencies

TRANSPARENCY PURPOSE

Access Hides the details of accessing another object, within or across
heterogeneous systems. This includes hiding how the object is
invoked, any data formats between the objects, and the interfaces
required.

Failure Hides the details that something has failed in the system, and the
act of recovery. This transparency enables fault tolerance.

Location Hides the details of a name and physical address used to locate
some information and to interface to it.

Migration Hides the details that an object has moved to some other location.
This transparency enables other software objects in the system to
continue to interact with the moved object, as though it were still
in the same place.

Relocation Hides the details that an interface has changed location, even if
that interface is being used. An example is moving a server to
some other location, and hiding that fact from the client. This can
be used to support load balancing.

Replication Hides the existence of copies of the software object in the system.
Database replication is an example. This is often used for
performance and reliability.

Persistence Hides that an object continues to exist in the system, even if the
object is deactivated and then reactivated in the system. This is
used for stability and robustness of the object(s).

Transaction Hides the coordinated activities of software objects in support of
any transaction (e.g., database, messaging). A transaction is
classified by the properties of atomicity, consistency, isolation,
and durability (ACID). This enables a consistent transaction to
occur, and establishes a more reliable system.

ch03.fm Page 99 Wednesday, September 6, 2000 4:18 PM

100 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

“Transparency” is about freeing an application program from having to pro-
vide some service or function. One has essentially “hidden” the details of where
and how this service or function will be provided, and hence made the application
“transparent” in regards to that function or service. The use of the term “transpar-
ent” is historical, but think of it as if having to look through an application to see
where that function or service is occurring. This detail is hidden from a user. For
example, locating a particular Web page is accomplished by merely accessing the
local Web server, even if the Web page is geographically distant. An application
is unaware of an infrastructure service that supports automatic recovery on a fail-
ure. An infrastructure service, such as something providing database services, is
unaware of the management of a connection.

One typical use of transparency is to hide the complexity of some service
provided by the infrastructure. In this way, for example, a complex service that
supports a database replication function is hidden from any application or infra-
structure service using that service.

A second use of transparency is to reduce effort of application development
by relegating the complexity to the infrastructure developer, which can then be
reused by all applications. This means that now the application developer does not
need to develop his own version of some service or function, and can instead rely
on some generalized version of that service or function in the infrastructure. This
concept arises in such familiar situations as a single log-on feature that provides
both the user and application the ability to log on the system once, and access any-
thing that log-on privilege allows; mathematical functions that are usually called
from libraries; or naming an object without having to know how the system refers
to that object. What is different here, and perhaps unfamiliar, is how this same
principle of reaching outside the application to libraries or repositories or infra-
structure services can now be utilized for many other parts of the software appli-
cation that may never have been considered.

Using access and location transparencies, the target location (e.g., the
receiver of a message) does not need to be known. Instead, the application need
only “refer to” the receiver in some way, say by some “name,” and the infrastruc-
ture provides all the details to locate the target through its “name,” ensure access
to the receiver is valid, and establish the connection to the receiver. This frees the
application developer from having to code target end details into his application
(actually, into every application that would need to communicate with the target).
It also reduces the number of interfaces to be developed, because the sending
application can use the same interface for some data to multiple receivers, by put-
ting in a parameter that indicates the receiver “name.” The interface becomes reus-
able, and that reduces the cost of developing the system and maintaining it.

As another example, imagine that the user is logged on to a Windows® prod-
uct. Now the user launches two applications, a vendor spreadsheet and a vendor
database management system. Each one requires a log on. “Access transparency”
allows the infrastructure for the user to log on each of these programs without

ch03.fm Page 100 Wednesday, September 6, 2000 4:18 PM

3.2 RM-ODP CONCEPTS AND TECHNIQUES FOR USE 101

requiring the user to know the details of the log-on processes; they are filled in
automatically. Thus access transparency has “hidden” the complexity of the log-
on process and the connection process from the user, and from any other applica-
tions the user may have running as well.

A Web browser also provides access transparency. When the user clicks on
a “link” on a Web page, the Web server transparently accesses the necessary serv-
ers by invoking the communication paths to the possibly heterogeneous servers,
and then downloads the information from the distant server to the browser. These
details are all hidden from the user by the Web server browser, and by the distrib-
uted name server that determines the location. Notice that the application devel-
oper does not need to be concerned with these details; the infrastructure services
of the Web server are reused. An example of a request for a lung (versus a heart)
image is shown in Figure 3.8. The “where” and “how” the lung image was
obtained is a response to the user (client).

Load balancing is supported by the migration transparency. This is the
ability, for example, to move a server to a new location or a different computer,
without impact to the client software. Instead, the infrastructure records and
manages the new location, much like a mail forwarding capability. The system
keeps the forwarding address for a period of time. In addition, the system can
also re-establish the connections of any interfaces being used, without knowl-
edge of the application.

In order to achieve distribution transparency, RM-ODP offers important
constructs in several of the viewpoints. The enterprise viewpoint allows the user
to specify the transparency as a requirement. The information viewpoint supports
this requirement in terms of specified constraints on the software and interfaces.
The computational viewpoint specifies the constraint on the interfaces involved.
This high-level specification of what talks to what, and the transparencies

Client Browser
Web Server

Web Server

Web Server

Web Server

Response

Transparent

Request a
Lung Image

Heart
Image

Lung
Image

FIGURE 3.8 Web Location and Access Transparency Example

ch03.fm Page 101 Wednesday, September 6, 2000 4:18 PM

102 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

involved, allows one to identify potential services and functions that could be
moved from the application level to the infrastructure level. The computational
viewpoint supports distribution transparencies by abstracting the object interac-
tions in terms of the constraints associated with the transparency. Lastly, the engi-
neering viewpoint describes the mechanisms in the infrastructure to actually
implement the transparency, and allows an application developer to see what
mechanisms could be used to off-load some functions and services in the applica-
tion to the infrastructure (e.g., locating a lung image). RM-ODP describes these
mechanisms for any application and, as such, makes these mechanisms automati-
cally reusable by each application. The key is to identify a transparency as a
“requirement” from the customer in the enterprise viewpoint—then everything
else cascades through the viewpoints.

3.2.6 CONSISTENCY

Viewpoint consistency ties together the constructs of one viewpoint to another. As
an example, an interface as specified in the computational viewpoint corresponds
to an interface as specified in the engineering viewpoint.

Consistency enables architecture evaluation, a common understanding, and
increased completeness and consistency of the full system specification. Consis-
tency across the viewpoints provides the ability to relate the specification of the
architecture to a system implementing that specification, provides a consistent set
of specifications that reflect what is wanted, and provides the ability to check con-
formance to the requirements.

There are several key points of correspondence that must be addressed. The
computational viewpoint must support any dynamic behaviors that are specified
in the information viewpoints. There is an explicit correspondence requirement
between the computational and engineering viewpoints, and there is an explicit set
of correspondences between the enterprise and computational, engineering, and
information viewpoints. An example of a correspondence between an enterprise
policy and enterprise role and constructs in the other viewpoints is shown in Fig-
ure 3.9.

There are typically more engineering objects than there are computational
objects, because the engineering viewpoint exposes all the objects (which may be
numerous) in the distributed infrastructure. For every computational interface
defined in the computational viewpoint, there must be an explicit correspondence
to an engineering interface in the engineering viewpoint. Each computational
object corresponds to one or more engineering objects. In other words, the com-
putational objects must map onto distributed engineering objects so that the distri-
bution strategy is clarified by the architecture.

ch03.fm Page 102 Wednesday, September 6, 2000 4:18 PM

3.2 RM-ODP CONCEPTS AND TECHNIQUES FOR USE 103

Another important point about consistency is that it enables geographically
distant organizations to specify different parts of the architecture independently,
and implement different parts of the system independently. This is achievable
because of the rules of consistency across the specifications that will enable them
to compose into a single specification or be realized into a single system. This is
a capability provided by RM-ODP that addresses many programmatic needs in the
architecture of systems.

RM-ODP defines the consistency of certain constructs between the various
viewpoints. However, there are several areas not yet defined. Some of these are
in the enterprise viewpoint and how the constructs of that viewpoint correspond
to other viewpoints. The work in [ISO-EntVP] is furthering these consistency
definitions.

Consistency checking coupled with conformance testing will increase con-
fidence that the system will operate correctly and reliably. These activities are
amenable to syntax and semantics checkers, architecture tradeoff analysis, simu-
lation of the system based on the architecture, and other analytical capabilities.

3.2.7 CONFORMANCE

One of the most important features of RM-ODP is its concepts and rules support-
ing conformance assessment. Conformance assessment ensures that the imple-
mentation of the system corresponds to the architectural specification.

FIGURE 3.9 Sample Enterprise Viewpoint Correspondences

Enterprise

Role

Policy

Computational

Computational Object

Computational Interface

Computational Interaction

Computational Activity

Information Object

Invariant Schema

Dynamic Schema

Information

Channel

Transparency Mechanism

Engineering

ch03.fm Page 103 Wednesday, September 6, 2000 4:18 PM

104 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

The RM-ODP rules of consistency across the specifications support four
types of conformance reference points for testing, available for use by the tester of
the system: perceptual, interchange, programmatic, and interworking. RM-ODP
then proceeds to specify how conformance is achieved and represented in the
architectural specification. The four types are represented in Figure 3.10.

One type of conformance test point is called programmatic conformance
reference point. This reference point is used in the usual notion of testing the
behavior of software interfaces. Many of the programmatic conformance tests
address the architecture specification from the computational viewpoint specifica-
tion.

A second type is perceptual conformance reference point. This is used in the
testing at user interfaces in communications ports that represent external bound-
aries to the system. Usability and user interface testing, as expected by the busi-
ness user, can be defined through perceptual conformance assessment.

A third type is interworking conformance reference point. This is used in
testing between systems implementations, to make sure they interoperate. It is not
sufficient for individual systems to have programmatic conformance (that is, only
interface agreements) in order to guarantee interoperability. Interworking con-
formance includes interoperability testing between working implementations,
making sure certain qualities of service are there, making sure that all the connec-
tions through all the software components work, and so forth.

The fourth type is interchange conformance reference point. This involves
testing of the exchange of external media, such as disks and tapes. Interchange
conformance assures that information stored on external media can be interpreted
and incorporated in other systems that conform to the same standards.

FIGURE 3.10 Conformance Reference Points for Testing

Connection

Interworking

Perceptual

Interchange

System

Software

Software

System

Software

Software

Programmatic

ch03.fm Page 104 Wednesday, September 6, 2000 4:18 PM

3.3 HOW RM-ODP IS USED 105

3.3 HOW RM-ODP IS USED

Thus far, the building blocks from RM-ODP have been discussed. Some use of
RM-ODP has also been discussed, primarily with respect to the viewpoints. In this
section, the approach to architecting, using RM-ODP, is discussed.

3.3.1 PREREQUISITE KNOWLEDGE

To specify a distributed processing system, certain knowledge is required. First,
distributed processing issues need to be addressed. They occur in specifications
time and again. Such issues include naming, timing, policies, administration,
security, and remoteness. Understanding of the architecture specification princi-
ples of abstraction, refinement, composition, modeling, and so forth is necessary
as well as knowing the difference between specification and description. This was
covered in Chapter 1, “Open, Distributed Processing, Architecture, and Architect-
ing,” and more will be discussed in Chapter 7, “Architecture Specification and
Representation.” If this understanding is missing, training is in order. Knowing is
prerequisite.

There is no value in creating a specification model per se—only in what that
model allows one to do or subsequently understand. A specification model is not
a physical, real, system (yet). It defines what the system is to do, precisely. Design-
ing and building a software architecture is largely a modeling activity. The down-
side is that a model is abstract and takes effort to create. The upside is the ability
to compare and analyze the appropriateness of an individual architecture from
choices of architecture and the ability to tailor and specialize an existing architec-
ture rapidly to new environmental circumstances, new technologies, or new func-
tional requirements. A model founded on RM-ODP is also founded in
mathematics. This enables analysis of the model, and assertions about consistency
to hold true.

A tool is something that aids the architect. All of RM-ODP may be consid-
ered a tool for architecting. The architect must still use engineering skills to use the
tool appropriately. In addition, graphical tools, commonplace in the market today
(e.g., UML tools), are part of the architect’s toolkit. Graphical development tools,
also commonplace in the market today, are part of the architect’s toolkit. Architec-
ture analysis, product tradeoff analysis, testing, and even the use of a natural lan-
guage are all tools for the architect’s toolbox. The problem the architect has is to
use the suite of tools in an integrated fashion, to generate a cohesive architecture
specification, and to relay that specification to the stakeholders. There are no “sil-
ver bullets” that can provide an integrated toolkit for the architect. Hence, the archi-
tect not only needs to utilize engineering skills to architect, but must also use
engineering skills to combine the use of all tools available to bring together a well-
formed architectural specification.

ch03.fm Page 105 Wednesday, September 6, 2000 4:18 PM

106 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

Certain technologies today come into play in the solution. Knowledge of
these technologies, what they do, and how they can be integrated in the system,
are things that the architect needs to know. Examples include object modeling,
abstraction, composition. Products and tools include IDL, UML, CORBA,
DSSA2, infrastructure middleware, Java™, Web, and so forth.

Tools for representing an architecture are always useful. In this book, UML
models are used extensively. They provide not only a graphical representation,
which is useful for communication with the stakeholders, but also some of the
details about the architecture specification. They enable a better understanding of
what is intended to be developed. But, as will be discussed in “Tool Support and
Limitations” on page 129, UML has limitations that the architect must deal with.

Since RM-ODP and UML are generic, any domain can use them. To use
them in a specific domain requires knowledge of the domain, knowledge of the
appropriate language from the domain (e.g., radiologist in a medical domain),
and someone who can relate the domain-specific language to the architecture
specification language. The result of the architecture specification is focused on
that specific domain and is called a DSSA (discussed in Chapter 1, “Open, Dis-
tributed Processing, Architecture, and Architecting”).

3.3.2 CONTINUING WITH HEALTHY HOSPITAL EXAMPLE

Let’s look at a continuation, as a refinement, of the Healthy Hospital medical
example, for use in the remaining sections. The requirements for Healthy Hospi-
tal, in part, were identified in Chapter 2. The customer3 wants the hospital to work
smoothly. The customer wants the hospital admitting agent to manage patient
administration. This includes admitting a patient for treatment by a radiologist,
scheduling an appointment with a physician, and adhering to state regulations.

The customer is interested in a distributed system, but wants it explained in
his own terminology. He wants to be sure that the kind of system he envisions will
be realized. And he does not want to learn 60 years’ worth of (computer) science
and (computer) engineering, including 10 years of object-oriented technology, to
determine whether the system will or will not work to his expectations.

An architect must also know something about the hospital business. Her
understanding of this field may be abstract or minimal. She must also understand
software architecture and design, to be able to communicate the architecture of the
system to the implementers of the system.

The technology transfer of ideas and communication across functional and
information technology domains has always been a critical issue, leading to lots
of miscommunication, which often results in a system that was not what was envi-

2. IDL is Interface Definition Language; CORBA is Common Object Request Broker Architecture;
and DSSA is Domain-Specific Software Architecture.

3. Customer here refers to the stakeholder who specifies the requirements of the hospital system.

ch03.fm Page 106 Wednesday, September 6, 2000 4:18 PM

3.3 HOW RM-ODP IS USED 107

sioned. This is largely due to a lack of a common language to explain what is
wanted. RM-ODP provides the capability, through its well-defined constructs, to
discuss hospital enterprise business functions and policies with the architect. This
takes the form of describing the enterprise boundaries, the community of users, the
system roles, the policies that constrain the system, and a high-level view of the
main functional parts of the system and how they interact.

3.3.3 WHERE TO BEGIN

The objective, in the initial steps, is to capture as much as possible at a high level
of abstraction. Details will come as further refinement is done. But at this early
stage, some things may not yet be known, and therefore cannot be specified. So
part of each step is to plan on revisiting what has already been specified. That is,
the specification techniques are incremental and evolve. It is important to capture
what is known, as soon as it is known, so that it is not forgotten.

Plan to refine the important parts (based on the highest risk, quickest time to
market, lowest cost, or some other programmatic reason), capture behavior as
known along the way, fill in the spots, and revisit. This is the essence of the initial
step.

Begin the process by determining the scope of the system through the enter-
prise and information viewpoints. As part of the business specification, the scope,
objectives, configuration of objects, roles assumed by those objects, the relation
among the objects in terms of processes they perform, and activities they perform
within each process are all part of the business specification.

The scope of Healthy Hospital is defined as what things are accomplished
by humans, machines, or other real-world entities, as well as the system. The
objectives of Healthy Hospital are specified. The objectives will define what the
system is to accomplish, so they are important. Where the software system(s) is to
operate within the business is defined. These are shown in Figure 3.11. There may
be one software system or multiple software systems in Healthy Hospital (possi-
bly different enterprise specifications combined into one). The software system is
specified in terms of roles and objects and their relationships (interactions and pro-
cesses), even with the nonsystem entities, and with the external systems.

Certain actions in a business may be assigned to certain users or software to
perform, some of which are shown in Table 3.5. Each of these is a role, whether
automated or a real-world entity related to a system in the enterprise. A role is a
formal parameter providing an identifier for a functioning part of the community
behavior. Initially, each role is very coarse-grained. As the refinement process
continues, the role defined may result in additional roles in the specification. For
example, the admitting agent of Healthy Hospital is a role. It may result in two
roles: one that admits patients, and one that schedules appointments. The details
of the refinement of the role will come later.

ch03.fm Page 107 Wednesday, September 6, 2000 4:18 PM

108 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

TABLE 3.5 Healthy Hospital Entities and Functions

ENTITY KIND OF ROLE FUNCTION

Administrator Person • Uses the software system

Administrator Software system • Defines the interfaces with the other external
organizations

• Ensures that the policies are adhered to
• Manages the functions of the systems
• Is able to access all records

Admitting Person • Uses software system

Admitting Agent Software system • Schedule appointments with hospital physicians
• Schedule appointments with radiology treatments
• Schedule admission to the hospital
• Validate patient information
• Validate that the patient can pay
• Admit emergency patients
• Update patient record information with schedules

Billing Person • Use billing system
• Validate total bill

FIGURE 3.11 Scope and Objectives for Healthy Hospital

Scope: Healthy Hospital
(Roles): Functions:
Hospital administrator: Access to all patient records
Hospital admitting agent: Admit patient, access admission records, create new record, update existing record
Radiologist: Access patient record, access physician order, record treatment
Physician: Access patient record, update patient record, place treatment order, place admission order
Patient: Receives admission, receives treatment, pays bill
Patient record: All activities captured
Pharmacy agent: Dispense medications, ensure adequate supply of medications, order medications
State regulation authority: Provides policy, authenticates equipment tests, conducts tests of equipment
Insurance agent: Provides policy, negotiates payment, submits explanation of benefits to patient
. . .

Objectives:
Provide quality patient care
Support the needs of the medical community
Provide an interoperable information sharing environment
Facilitate a better-performing set of activities
Adhere to a changeable hospital policy
Adhere to insurance billing policy, which may change
Adhere to state regulation
Be more efficient
Encourage patients and physicians to use the facilities
Make a profit

ch03.fm Page 108 Wednesday, September 6, 2000 4:18 PM

3.3 HOW RM-ODP IS USED 109

ENTITY KIND OF ROLE FUNCTION

Billing agent Software system • Compute a total cost of all bills
• Ensure that the appropriate billing codes are associated

with all billable treatments
• Submit all bills to the insurance company within hospital

policy timeframe
• Submit bill of all balances due to the patient
• Ensure the insurance company has submitted the

explanation of benefits (EOB) to the hospital, along with
payment, within hospital policy rules

• Record all billing information in the patient record

Radiologist Person • Perform treatment
• Perform equipment safety checks

Radiologist Software system • Validate patient information
• Access the physician order
• Validate equipment safety
• Record the treatment to the patient record in accordance

with hospital policy

Patient Person • Receive Healthy Hospital services

Patient agent Software system • Provide schedule of physician and radiologist treatments
• Submit bill

Patient record Software system
resource

• Record patient name, address, phone number, place of
employment

• Record patient insurance information
• Record patient outstanding balance
• Record authorized physicians
• Record physician order
• Record radiologist treatment and results
• Record all schedules
• Record medications dispensed
• Manage access control

Physician Person • Perform scheduled patient treatments
• Access patient records
• Achieve valid accreditation

Physician agent Software system [This is an external system, so the details are unknown.
However, with respect to Healthy the following is provided by
Healthy.]

• Access patient records
• Validate physician credentials
• Enable updates to the patient records

Pharmacist Person • Manage inventory of medications
• Dispense medications

TABLE 3.5 Healthy Hospital Entities and Functions (Continued)

ch03.fm Page 109 Wednesday, September 6, 2000 4:18 PM

110 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

The behavior is part of the information specification. The business and
behavior information should be captured at a high level of abstraction. But initially,
not everything is known. To the extent possible, the architect needs to capture:

◗ Cooperation—To what degree are the parts of the system to execute tasks
jointly, and separately?

◗ Autonomy—What parts of the system are to be autonomous? That is, what
parts are to retain their independence, though they may cooperate with other
parts?

◗ Policies—What are the policies that drive the business and system needs?
These should be expressed in terms of what is permitted, what is obligated,
and what is prohibited.

ENTITY KIND OF ROLE FUNCTION

Pharmacy agent Software system • Provide an accurate inventory of all medications
• Record all medications dispensed in the patient record
• Submit an order for more medications as inventory

decreases

Insurance
company

External business • Provide policies
• Provide EOB to patient
• Provide EOB and payment to Healthy Hospital

Insurance agent Software system • Provide EOB results to Healthy Hospital within amount of
time specified in hospital policy

• Provide the appropriate policies for use by Healthy
Hospital

• Ensure EOB and payment received by insurance company

State regulation External business • Provide state policy
• Certify physicians
• Certify Healthy Hospital
• Certify equipment safety

State regulation
authority

Software system • Provide state regulation codes
• Provide equipment safety certificates
• Provide physician certifications

Notifier Software system • Interface with admissions for when a patient is admitted to
the hospital

• Notify all appropriate systems involved with admission
(ill-defined in the example): nursing staff, physician,
cafeteria, hospital room assignment staff, and so forth

TABLE 3.5 Healthy Hospital Entities and Functions (Continued)

ch03.fm Page 110 Wednesday, September 6, 2000 4:18 PM

3.3 HOW RM-ODP IS USED 111

◗ Quality of service (QoS)—In the sense of the enterprise viewpoint, a QoS
requirement is an end-to-end user requirement. That is, a QoS may state that a
bill must be submitted to the insurance company within 10 days. At this point,
the QoS specification is not about real-time needs (necessarily, unless that is
the subject of the enterprise specification).

◗ Shared environment—What are the objectives in terms of interoperability and
sharing of information?

◗ Other “ilities,” such as scalability, reliability, evolvability, flexibility, portabil-
ity, dependability, availability, and security. A set of objectives about the dif-
ferent ilities should be specified at this point. “Ilities” drive the system
specification. They are difficult, if not impossible, to add later. Hence, even if
the stakeholder does not address these system properties up front, the architect
needs to guide the stakeholder toward specifying what is important.

◗ Functionality—What the system is to accomplish, functionally, is specified.
This specification will lead to the identification of enterprise roles, actions
accomplished by those roles, and constraints on those actions.

The architect begins the process of refining the functionality into additional
roles and relationships. An object is associated with a role, and as the role is fur-
ther refined, different objects may assume different aspects of the role. That is, an
object is identified to perform the functions of the role. For example, object “Guy”
may assume the role of the admitting agent in Healthy Hospital. Another object
“Linda” may assume that same role, at the same time or at a different time,
depending on the constraints associated with that role. In each case, the function-
ing and behavior of the role is specified once, despite how many objects assume
the role. Constraints are associated with a role. They apply to the behavior
expected of any enterprise object that is to fulfil the role. For each role-based
object, the interworking with another role-based object is captured, in terms of a
set of actions or a single action. The architect specifies the set of actions between
objects, not yet worrying about the specification of actual interfaces, what infor-
mation is shared in the actions (which will be part of the information viewpoint
specification), and what constraints are associated with the interworking.

The architect, then, captures the states of the objects, types of objects, and
parameters about the object, to the extent known. The actions that allow the
objects to transition from one state to another are captured in the dynamic schema
of the information specification. The states the objects are allowed to transition to
are captured in the static schema of the information viewpoint. The type and
parameters of the object are captured in the information object specifications. This
allows the architect to abstract the objects of the system, how they transition from
state to state, and the actions that allow them to transition.

All along the way, the architect must diligently capture whatever behavior is
identified. If the behavior is determined by a policy, the architect needs to also
determine what the policy statement applies to, and the strength or weakness of

ch03.fm Page 111 Wednesday, September 6, 2000 4:18 PM

112 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

the policy statement. This is done in terms of what is permitted, prohibited, obli-
gated, and associated with a role.

The architect must also begin the process of capturing environment con-
tracts. Environment contracts define the interworkings with the external commu-
nities of the business. Contracts establish certain behavior and constraints on the
business and need to be specified. These elements to be specified were addressed
in the Healthy Hospital example, with the insurance company providing a policy
that affects the way the hospital submits and processes bills. Some of the policies
and environment contracts are shown in Figure 3.12.

The architect should fill in preconditions and postconditions as they are
known, and revisit the behavior to update appropriately. (See [Wing-95] for more
information about pre- and postconditions.) Preconditions in RM-ODP act as a
guard to allow an object to transition, so it is important for the pre- and postcon-
ditions to be explicit at some point.

FIGURE 3.12 Initial Healthy Hospital Policies and Environment Contracts

Hospital Policy
Must provide access to patient records 24x7
Must authenticate access to patient records
May only admit patients with no more than $100 outstanding balance
Must admit all emergencies
Must abide by state regulation policy
May adhere to insurance billing policy
Must follow physician orders
Must bill insurance company within 10 days
Must record all treatments to patient record within 24 hours
Must not overbill, subject to state regulation policy
Must not bill for physician
Must dispense medications in accordance with physician order
Must dispense medications in accordance with state regulation
Must assign unique identifier to patient record
Must record patient name, address, billing information in patient record
. . .

Insurance Company Billing Policy
Must submit bill to insurance company within 10 days

Environment Contract: Healthy with Insurance:
Must establish billing agreement with hospital
Must submit EOB to patient within 30 days
Must submit EOB and payment to hospital within 10 days
Healthy prohibited from charging <unknown> amount
for procedures

Environment Contract: Healthy with Physician:
Precondition: Valid physician of the hospital
Precondition: Valid credentials
Permitted to access patient records
Permitted to notify results of tests
Prohibited from billing insurance company for fees
Obligated to fulfill physician order

State Regulation Policy
Must authenticate physician credentials
Must establish safety of equipment

Environment Contract: Healthy with State Regulation:
Precondition: current valid hospital credentials
Precondition: current valid physician credentials
Obligated to allow safety checks of equipment

State Regulation Contract (Code)
What constitutes authentication of a physician
What constitutes equipment safety
What constitutes hospital authentication

Insurance Contract
What constitutes a billing statement

Physician Contract
What constitutes a physician order

ch03.fm Page 112 Wednesday, September 6, 2000 4:18 PM

3.3 HOW RM-ODP IS USED 113

In terms of the business, there may be patterns of business specifications for
reuse. A business pattern is a structured set of concepts that reflects a specific busi-
ness domain, what operations are involved, and how it can accomplish some
objective. The patterns discovered for reuse help to fill out some of the specifica-
tion for the business.

Some existing business patterns are founded on RM-ODP for reuse. Others
are not, but can be adapted to the RM-ODP concepts. An example of the former is
the general ledger specification from the Object Management Group (OMG)
[GenLedger-98], wherein the enterprise, information, and computational view-
points were used to specify the general ledger transactions, and the associated
interfaces were then defined using IDL. An example of the latter is the specifica-
tion of the Uniform Commercial Code (UCC) [UCC, and Kilov-98], which deals
with the sale of goods costing at least $500. In this case, the specification results
in a contract specification that is written down explicitly. An excellent discussion
of such semantics for a business specification is [Kilov-98]. More information
about enterprise business specification is provided in Chapter 11, “Enterprise
Business Specification.”

Specifying invariants as they become known is an important part of the pro-
cess. An invariant is a property of one or more objects that remain constant (do not
change) as the object goes from state to state. An invariant can be used to constrain
the set of actions of an object, and in the case of RM-ODP, often leads to precondi-
tion statements. In particular, the invariants are specified in the invariant schema of
the information specification, and constrain both the dynamic and static schemata.
Therefore, as the architect determines the invariants, the architect needs to revisit
the static and dynamic schemata to determine any possible changes. “Hard ques-
tioning of system invariants can lead to radically new designs.” [Wing-95]

Another potentially critical factor is the handling of system failures. Since
most systems fail on occasion, the architect needs to capture conditions of failure,
and actions to take on failure. Some conditions of failure result in not adhering to a
policy or violating an invariant. If certain critical actions must not result in an error,
then a policy statement prohibiting such actions needs to be captured. If the system
is to attempt a recovery, then fault tolerance is captured as a contract on the behav-
ior of the system. For example, fault-tolerant systems generally have a rather com-
plex infrastructure to support error detection, analysis, and recovery. (More about
this topic is covered in Chapter 16, “RM-ODP Fault Tolerance Framework.”)
Sometimes error handling is addressed through an exception raised in the interface,
and specified as such. This is a computational specification consideration (the spec-
ification of an interface and exception handling), which at this point, the architect
may or may not choose to capture. But it’s important to capture the objective that
recovery from error is required in the enterprise viewpoint, to be refined later in the
computational and engineering viewpoints, because the results of specifying error
conditions generally lead to additional required capability in the system.

In terms of the objectives, certain critical factors may be invariant. These set
the stage for how to proceed throughout the specifications, using the different
viewpoints. One such factor that occurs often is the desire to use commercial prod-

ch03.fm Page 113 Wednesday, September 6, 2000 4:18 PM

114 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

ucts to the maximum extent possible. If this is required, then stating this up front
as a part of the invariants is important. It affects decisions made throughout the
entire architecture specification. The role the product plays in the business needs
to be defined. The interworking of the product with other parts of the enterprise
needs to be specified. Any known behavior, such as preconditions, postconditions,
or dependencies, needs to be defined.

If the business requires the use of a product, the architect needs to position
that product in the enterprise specification, and determine the effects (behavior)
the product has on the business objects, and the effects the enterprise objects have
on the product. Therefore, at some point, the architect may decide to find out more
about the required product. The architect may then decide to elaborate the speci-
fication using the computational and possibly engineering viewpoints to deter-
mine the operations made available across the product’s or object’s interfaces and
the behavior. This may require creating a component in the specification that rep-
resents the product, specifying the component as part of the environment of the
system, and defining the constraints associated with interworking with the prod-
uct. As these are exposed, the architect captures the specification in the appropri-
ate viewpoint. The product, then, becomes part of the system, as well as part of the
environment of parts of the system. The internal operation of a product is usually
not made known. Capturing the specification of what is known in all the view-
points, as applicable, better enables a system that can work together. This is rep-
resented in Figure 3.13.

In addition, through the process of architecting, criteria for any such product
may be identified as constraints on the product selection. In other words, the con-
straints of a choice of product at this stage may later prove to be unsatisfactory to
the solution. This may lead to a different choice of product or a refinement of the
business rules because of the product selected. Whatever happens, the end result
is captured in the architecture specification.

FIGURE 3.13 Specifying the Use of a Product in the Enterprise

Admitting
Agent

Patient
Database

DataBroker

Policy
Administrator

Healthy Hospital Community

others

Community AProduct Community

Environment for Community A

Environment for Product Community

Interworking relationship
Behavior specification
Policy constraints

ch03.fm Page 114 Wednesday, September 6, 2000 4:18 PM

3.3 HOW RM-ODP IS USED 115

Another critical factor that may emerge is the requirement that the solution
must be delivered to market within, say, one year. This factor may limit the use of
a formal specification to only those things deemed critical. These things are deter-
mined by the business specification. Typically, the things to be specified are data-
base information specification, interapplication specifications, and the user
interface, all in conjunction with the expected behavior. Functionality consider-
ations that are “nice to have” may be delayed to an incremental release of the prod-
uct. This will be easy to do with the RM-ODP specification, because where those
additional capabilities fit into the solution will be clear, and can therefore expedite
the delivery to market.

Another critical factor that may emerge is the need for a consistent user
interface. A well-defined information specification and how that information is
displayed to the user are derived from the information viewpoint specification.
The definition of the information objects (the information displayed to the user),
along with the allowable actions that change the state of the object (the actions to
display different units of information), come from the information specification.
The enterprise specification specifies the actions that take place across the objects
to provide the information, and the actions the user can perform.

A point about using the enterprise viewpoint is in order here. The objects of
the enterprise specification may include human users or machinery (such as in
manufacturing), as discussed earlier. These objects can be modeled in the enter-
prise, along with their interworkings on the parts of the system, and the constraints
applied to those interworkings. The physical entities are specified as a separate
community, and the interworking with the system entities are specified in terms of
an environment contract.

Another critical factor may be integration of the applications (components,
in RM-ODP terminology) to better provide an information sharable environment.
All sharable information should be defined in the information specification, as a
single consistent model. The information model then drives applications and their
interactions, specified in the computational and engineering viewpoints.

The architecture specification rules of composition, abstraction, refinement,
precision are used throughout the enterprise specification, to get to a point of an
adequately specified business. Once there, the architect can start refining the busi-
ness specification to more detail towards a system solution.

All of the specifications created are founded on the RM-ODP object model
and concepts. However, as was shown in the Healthy Hospital example, these con-
cepts allow a domain-specific language: hospital, insurance, billing, physician,
patient, and so forth. These are concepts from the medical domain, but are formu-
lated in terms of the concepts from RM-ODP: objectives, environment contract,
roles, policies, etc.

The information specification is the cornerstone for all the other specifica-
tions (from each of the viewpoints used). It is generally the most precise specifi-
cation of the semantics of business and of the system to be developed. The
behavior of the system is defined once, not threaded throughout all the remaining
viewpoint specifications. The information viewpoint captures the terms of all the

ch03.fm Page 115 Wednesday, September 6, 2000 4:18 PM

116 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

other viewpoints into a single set of terms, to describe the behavior of the system.
As such, throughout the architecting process the architect needs to pay close atten-
tion to the specifications in the information specification. Even though at the ini-
tial stage, preconditions, postconditions, and invariants are somewhat defined, the
architect needs to constantly revisit this particular specification to ensure its cor-
rectness. As an example, date and time should be specified in the information
viewpoint. Why is this important? Consider the Y2K (Year 2000) problem, for
example. Had the date and time been correctly formulated in one place, it could
be changed in one place, instead of the possibly thousands of places in the system.

A business specification will also define information and information pro-
cessing across the enterprise, independent of actual interfaces or databases or any
other implementation mechanism.

At this point, the results for Healthy Hospital might include what is repre-
sented in Figures 3.14 and 3.15. The use of UML has limitations, as noted in pre-
vious discussions, and as will be discussed in future chapters. But UML is
adequate to use for some of the RM-ODP concepts, such as those shown in Figure
3.14. The limitations of UML revolve around the ability to adequately specify
semantic behavior and constraints, as shown in Figure 3.15.

Figure 3.14 represents the roles and responsibilities in terms of a Use Case
diagram. The “environment” notation is to represent external roles assumed. The

FIGURE 3.14 Use Case View of Healthy Hospital Business Scope and Objectives Example

Admission Agent

(from Admissions)

Radiologist

(from Admissions)

Prescribe Treatment

(from Admissions)

Physician

(from Real Physician)

Record Results

(from Admissions)

Patient Record

(from Admissions)

Patient

(from Real Patient)

Perform Treatment

(from Admissions)

State Regulation
Authority

(from State Reg)

Patient Admin

(from Admissions)

Environment

Environment

Environment

Healthy
Hospital
Scope

ch03.fm Page 116 Wednesday, September 6, 2000 4:18 PM

3.3 HOW RM-ODP IS USED 117

scope of the system is shown as the internal set of actors and Use Cases. Figure
3.15 represents the details of the business scope, objectives, roles, policies, and
behavior for the architecture specification, represented in English text.

At this point in the specification, the objectives and scope for the distributed
processing system become clear. Issues related to distributed processing (dis-
cussed in Chapter 1, “Open, Distributed Processing, Architecture, and Architect-
ing”) are addressed in the next step.

3.3.4 NEXT STEP: REFINEMENT OF THE
 ARCHITECTURE SPECIFICATION

Once the business specification is partially defined, to include the behavior, the
architect can refine it further using the computational and engineering specifica-
tions. The architect, who can relate these constructs to the RM-ODP viewpoint
constructs, easily understands the language used to specify the business.

Decomposition into interacting components is captured in the computa-
tional viewpoint specification. Further refinement into infrastructure supporting
objects, distribution, and communication is captured in the engineering viewpoint

FIGURE 3.15 Some Refined and Defined Specifications of Healthy Hospital Example

Objectives (refined):
•treat a patient
•manage patient care
•schedule treatment
•adhere to state regulations

Scope: Hospital, roles, actions

Roles and Actions:
• admitting agent: admits patient, schedules radiology
 treatment, schedules physician
• radiologist: performs treatment within scheduled time,
 records results within scheduled time
• patient (environment): receives treatment
• physician (environment): performs treatment
• physician record: records treatment within scheduled time
• patient records: maintain persistent patient information
• state regulation authority (environment): provides policies

Hospital Contract (defined):
•quality of service:
 24 hours to record radiology treatment
 24 hours to record physician treatment
•duration:
 6 months persistence storage of patient records
 3 months update on state regulation policy
•state regulation to update policy
 patient to receive treatment

Enterprise
Viewpoint

Information
Viewpoint

Pre-conditions:
•Patient admitted befor scheduling
•Patient scheduled before radiologist treatment
•Patient record exists before treatments

Post-conditions:
•Schedule updates patient record
•Radiologist records treatment
•Physician records treatment
•Patient record updated

Invariants:
Admission agent available 24×7
Radiologist available 8×7
Patient records available 24×7
State regulation policy
Patient record consistent

Policy (refined):
•obligation:
 admission agent to admit patient
 admission agent to schedule radiology
 radiologist to perform treatment
 physician to record results
 radiologist to record results
•permission:
 admission agent to schedule physician
•prohibition:
 non-adherence to state regulation policies

ch03.fm Page 117 Wednesday, September 6, 2000 4:18 PM

118 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

specification. These two specifications provide the refinement of the business
needs into a distributed processing system, constrained by the semantics captured
in the information specification.

The next step is generally to use the computational viewpoint, to refine the
business specification to a decomposition into objects and interfaces. Following
this, the architect uses the engineering viewpoint to refine the specification into
distributed software across different nodes (computers) and different networks
(channels). Further, if distribution transparency is required (e.g., single log-on
capability, virtual addressing, or replication), the mechanisms are defined in this
viewpoint. Eventually the architect and implementer make product, standards, and
technology decisions to realize the architecture and create a solution.

One might object that this resembles a waterfall approach to the use of the
viewpoints, which in essence will not work! A waterfall approach would address
each of the viewpoints in layers. First, the enterprise is fully defined. Next, the
information, then the computational, then the engineering, then the technology,
then the testing viewpoints are added. But architectures are not created this way.
They are created incrementally, as more knowledge is learned about a subject. So
the methodology of “specify a little, refine a little, learn a lot, and cycle through”
is the approach that works. This approach was successfully used in work for
Europe’s Air Traffic Management infrastructure [Tyndale-Biscoe].

Again, what does work is using the viewpoints for parts of the specification
incrementally, and folding back in the determining factors realized. This may
require changes to the viewpoint specifications already accomplished. What’s an
example? Suppose the architecture to this point provides a single component in the
system that interacts with the “physician” community, but there are hundreds of
such communities associated with the hospital. Furthermore, their procedures dif-
fer, and a patient may be a patient of several physicians. Not only is there a single
point of failure in the system (the physician component), but there is no concurrent
access to the patient records allowed. A change to the business specification might
be to allocate a separate physician component to each physician community, pro-
vide a control component that monitors the status of these components to ensure
good working order and provides multiple accesses to another component in the
hospital which, in turn, allows concurrent access to the patient records database.
Maybe each of these components has a separate quality of service requirement:
one physician wants “immediate” access on demand; one physician wants “results
within 3 hours,” etc. Each binding from the hospital component to the physician
component would be different, based on these qualities of service. Again, this
results in a change in the architecture, and these changes permeate throughout the
rest of the specifications.

As can be seen, the viewpoints are not layered, nor must they be used in a
waterfall approach. They are used, as needed, to provide more detail about a set of
concerns in the architecture.

The architect may choose to employ a “spiral model” [Boehm-88] approach,
as described in Chapter 2, “RM-ODP Manager’s Primer.” Perhaps there is a high-

ch03.fm Page 118 Wednesday, September 6, 2000 4:18 PM

3.3 HOW RM-ODP IS USED 119

risk area determined from the business specification, such as interoperating
between the hospital and the insurance company that may have different policies
or different architectural approaches. That particular interaction may be refined
further throughout all of the viewpoints necessary to achieve a good, precise spec-
ification. Maybe the architect and implementer devise a solution to this high-risk
area, prototype it, and iterate with the customer on how well it works. Using the
conformance tests, the prototype can be validated to follow the architecture spec-
ification, so that if the customer doesn’t like it, the specification changes.

An important step in this part of the specification process is to capture
refined behavior in the information viewpoint. The architect should always look
to the information viewpoint as the central important area of capturing the behav-
ior of the entire system. It is not only a place to provide the behavior, but also a
place to determine what behavior affects the decomposition of the system. For
example, as was shown in the Healthy Hospital example, a QoS (billing must be
accomplished within 10 days) affects how the interfaces are constructed, and how
the binding of the interfaces works. This type of constraint may also result in addi-
tional components to make sure the binding behavior is followed, or produces a
failure if it is not, followed by notifying a user of the failure.

Figure 3.16 further refines the medical example of Healthy Hospital, show-
ing a possible distribution to client, server, and database platforms. A component
named “State Regulation Procedures” is shown that reflects the state regulation

FIGURE 3.16 Example of an Architecture Using Computational, Engineering, and Technology
Viewpoints

Hospital
Admitting
Procedures

Hospital Patient
Database

System of
Focus

Policy

Admin
Client

Radiologist

Treatment
Recording
Procedures

State Regulation
Procedures

Schedule
Procedures

Physician
Client

Doctor Patient
Database

dialup

LAN

LAN

Web
State

Regulation
Authority

dialup

PatientPhysical

DataBroker

Policy
Administrator

Hospital
Policy Data

Medications Schedules

Physician
Order

Patient
Record

Patient
Treatments

ch03.fm Page 119 Wednesday, September 6, 2000 4:18 PM

120 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

constraints identified in the previous two figures. The interfaces are shown as
arrow lines, though in a true specification the details of the interface and bindings
would be defined. The components “Schedule Procedures” and “Treatment
Recording Procedures” are shown as residing on the same computer. Each of these
components in a real architecture specification would be refined to much smaller
components; e.g., the “Schedule Procedures” would define the objects and inter-
faces involved in its function. Also, not much is shown in the way of infrastructure
service support (such as security, administration, management, and the like). The
physician and state regulation authority are considered to be outside the scope of
the system, but interact with the system as part of the system’s environment. For
each, a dialup connection is identified, and therefore must be provided. This is an
example of how RM-ODP focuses on the specification of the system through the
use of three separate RM-ODP models: computational, engineering, and technol-
ogy. The effect of the information specification would show up as part of the true
specification of each interface, binding, and even the object’s behavior. This
example is only notional.

Although technology today is capable of realizing many user needs through
the use of the Internet, with very capable and resource-rich workstations, distrib-
uted component frameworks, and the like, the architect should still architect the
distributed system. The large number of technologies, some that work alone, some
that can work together, coupled with the need for designing the system to be cost
effective, reliable, available, and well performing, remains a challenging task!

RM-ODP helps map the architecture onto the technologies and products of
choice. The architecture specification captures the functioning and behavior of the
system. With this knowledge, a technology is chosen that relates to what the func-
tion is to perform, how that function is to behave, what it must interact with, and
how it must be distributed. Product selection then becomes easier, because what
to look for and what to ask for become part of the criteria for selecting the product.

Part of this process also involves identifying where the specification cannot
be met due to some insufficiency of the current technologies. When a new tech-
nology emerges, the architect is able to determine if it can perform the needed
capabilities, within the constraints of the expected behavior of the system. That is,
RM-ODP provides the architect with a set of criteria to evaluate product selection,
and determine (through the specification of behavior) what properties the product
must have to interact with other parts of the system.

In addition, RM-ODP provides the ability to establish conformance test
points to test the system implementation to the specification. In the choice of a
technology or product, then, the architect can identify where testing points need
to be provided in the product and what information needs to be provided from the
product. The tester can then observe the behavior of the system from these test
points, and relate the information provided in terms of the architecture specifica-
tion.

ch03.fm Page 120 Wednesday, September 6, 2000 4:18 PM

3.3 HOW RM-ODP IS USED 121

SIDEBAR

UNDERSTANDING SPECIFICATION AND TECHNOLOGY CHOICES

Technology today is both exceedingly capable and complex. Understanding
what a given technology can provide requires the architect to understand its
architecture, behavior, interfaces, and management. A common approach to
the problem is to “buy commercial off-the-shelf (COTS),” to “glue COTS
together,” and then to convince the customer the end result is what was
really wanted.
——RM-ODP provides a common, consistent approach to specifying a sys-
tem that is essential for a full and accurate specification. It is okay to realize
the 80% solution, but have you ever wondered how you calculate the 80%
when you do not know the 100%? Attempting to define the 100% is not easy.
But attempting to find all the alternatives, understand them, and combine all
the possible solutions from the technologies and products of today to achieve
the system wanted is immensely difficult.
——With limited budgets and limited time, the enterprise and information
models define what 100% means. Many financial, telecommunications, and
European government agencies are doing just that. Use of the rest of RM-
ODP for architecting the business solution and design is a choice. The archi-
tect could define what 80% means, and proceed to architect the 80% solu-
tion. The architect could architect the 100% solution, and select
technologies to solve 80%. Whatever is decided, all the business rules, pro-
cessing semantics, and top-level functional needs of the system should still
be specified. Then mapping the specification to the technologies and prod-
ucts becomes a planned decision, not an ad hoc one.

If the system requirements are informal at this stage, the architect needs to
further specify them. This occurs by spiraling through the viewpoints and express-
ing the requirements in RM-ODP terminology. Evaluation of technical choices
leads to possible refinement of the enterprise specification to allow for technical
feasibility. For example, if a security technology product provides some capability
that must interwork with the system administration capability, the enterprise spec-
ification needs to address this in terms of enterprise objects and their interactions,
coupled with a policy statement that defines this need. Development of informa-
tion and computational specifications may have security and management impli-
cations. This results in similar changes to the enterprise specification, information
specification, and possibly the computational specification. The point of this dis-
cussion is that the viewpoint specifications are incrementally specified, refined,
and even updated, as more information is gathered.

ch03.fm Page 121 Wednesday, September 6, 2000 4:18 PM

122 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

3.3.5 ITERATIVE REFINEMENT

The use of the viewpoints is to a certain level of abstraction. The architect has the
tools of not only abstraction but also composition. So the architect may, at some
point, have a precisely defined, but high level of detail about the architecture.
What happens next?

The architect continues the process of refining the abstractions, refining the
compositions into finer-grained objects that make up the composition, and further
precisely defining their properties. The architect does this through the use of the
viewpoints, always capturing more and more behavior details into the information
viewpoint, and always using the information viewpoint to affect decisions on
interfaces and bindings.

The architect in essence specifies a little, builds a little, tests a little, and
determines if the result is what is needed, iteratively. The use of the viewpoints is
represented in Figure 3.17.

When all of the coarse-grained objects (which are compositions of a group
of objects) have been refined and defined, and all the abstractions have been
defined in terms of implementation capabilities, the architecture specification is
completed. Again, only those viewpoints necessary to get to the implementation

FIGURE 3.17 Use of the RM-ODP Viewpoint

Enterprise
Viewpoint

Information
Viewpoint

Computational
Viewpoint

Technology
Viewpoint

Start

Refine and/or Revise

Refine

Revise

Revise

Influences

Revise

Revise

Engineering
Viewpoint

Affected by

Input to

ch03.fm Page 122 Wednesday, September 6, 2000 4:18 PM

3.3 HOW RM-ODP IS USED 123

point are necessary, and only concepts from each of the viewpoints that are neces-
sary to precisely define the constructs of the specification are used.

For example, RM-ODP provides the concept of a node. This is in essence a
computer and its operating system. The architect may already know, from previ-
ous iterations, that a Sun Solaris™ operating system and platform will be used.
Therefore, the use of the resource management of this operating system, the
threading capabilities, and how a channel is established, are specified by the oper-
ating system. The architect needs to translate the vendor-supplied information into
RM-ODP terms, and either use the vendor concepts or the RM-ODP concepts.
Whatever the architect chooses to do, a relationship between vendor and RM-ODP
concepts is necessary to achieve the consistency and conformance checking of the
viewpoints.

The process of writing specifications is similar to the processes of writing
programs and writing mathematics. You need to worry about the big picture
(e.g., the overall structure, organization, and meaning of concepts) as well
as the fine details (e.g., syntax and special symbols). You need to learn the
rules and concepts. You need to learn what rules must always be followed,
and what rules you can break. As with writing programs and mathematics,
writing specifications takes learning, practice, engineering, and patience.
[Derived in part from Wing-95]

Even if the architecture depends on future technology becoming available,
it may still be considered complete as long as the basic functionality of the system
is isolated from the dependency of that technology. That is, if that technology is
isolated to be part of the environment of the rest of the system, there are mecha-
nisms in RM-ODP to address interaction with an environment. The future technol-
ogy then has minimal impact on the rest of the specification. This was shown as
an example in Figure 3.13. If the use of that future technology is intrinsic to the
entire architecture, then the architect needs to re-specify the architecture to isolate
the technology for use when it becomes available.

Once again, if the intended system solution does not need all of these, that’s
okay, as long as what is needed is precisely defined and specified through the
architecture specification; a composition of viewpoint specifications.

3.3.6 WHEN WILL I BE DONE

The process of architecting is iterative. It iterates through the viewpoints (of inter-
est), and then iterates back through them to make changes as more details emerge
affecting the overall architecture. The rules of abstraction, composition, and object
model foundation are always used in conjunction with each viewpoint.

ch03.fm Page 123 Wednesday, September 6, 2000 4:18 PM

124 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

If current technologies do not accomplish all that is wanted, then the archi-
tecting process continues until the emerging technologies and products are in hand
to use.

When will you be done? When the system as wanted is in hand. But then the
business stakeholder may want changes, added functionality, use of a particular
new technology (e.g., voice capabilities, visualization techniques), requiring the
architect to determine where and how to include these technologies. The short
answer is the specification is completed when an implementation becomes feasi-
ble. The long answer is the specification is completed when the customer decides
it’s completed.

RM-ODP provides some patterns of reasoning for use by the architect in
specifying more about the distributed processing system:

◗ Interactions are defined in great depth, and covered in Chapter 13, “Interaction
Framework: Interoperability.” The rules in RM-ODP define how constraints
and behavior are associated with the interactions, how the interactions can be
specified independent of distribution, and how the actual mechanisms for
communication are specified.

◗ Support for composition is provided throughout the RM-ODP specification. In
fact, just about anything in RM-ODP can exist as a composition, including
behavior. It’s interesting to note that a component in RM-ODP can be as small
as a library or as large as a full system. What this means is that the RM-ODP
rules and constructs of composition and architecture specification can apply to
the full distributed processing system as well as to a fine-grained component
that is part of the system.

◗ Heterogeneity, a problem in “plug and play” system composition, is handled
by explicit specification of the behavior of the entity, associated with the RM-
ODP specification of coupling heterogeneous parts through the interaction
specifications. RM-ODP also addresses quality of service constraints, and
how they drive the specification. More is discussed about this topic in Chapter
8, “Composition and Semantics: Quality Composition Minimizing Architec-
tural Mismatch.”

◗ A failure model and fault-tolerant set of mechanisms are provided. This topic
is covered in Chapter 16, “RM-ODP Fault Tolerance Framework.”

◗ Specifying QoS, and how it relates to the objects and interactions are specified
in a companion RM-ODP standard [ISO-QOS, Sluman-97]. This topic is cov-
ered in Chapter 17, “Quality of Service Model.”

◗ Federation provides the ability of multiple domains to remain autonomous,
and yet share in the distributed processing. Federation is also addressed by
RM-ODP, and covered in Chapter 15, “Federation.”

◗ As was addressed in the initial step, specifying a policy determines a lot about
the behavior of the system. How a policy is specified and how that specification
affects the parts of the system is covered in Chapter 14, “Policy Framework.”

ch03.fm Page 124 Wednesday, September 6, 2000 4:18 PM

3.4 SUMMARY 125

◗ RM-ODP defines mechanisms for distribution transparencies, as discussed in
this chapter. These are discussed in more detail in Chapter 10, “Hiding System
Complexities: Distribution Transparencies.”

◗ RM-ODP defines mechanisms for consistency and conformance testing. More
is discussed in Chapter 11, “Architecture Analysis and System Conformance
Evaluation.”

◗ Certain infrastructure capabilities are supported by RM-ODP functions. An
example is node management, which among other things manages the alloca-
tion of threads to objects, resources of the computer, and establishment of a
connection. This is discussed further in Chapter 9, “RM-ODP Functions.”

3.4 SUMMARY

The RM-ODP constructs and concepts are relevant and most important for any
architecture specification. Viewpoints aid in this decision-making by separating
concerns for the different stakeholders, omitting unnecessary details, and avoiding
the expression of requirements in terms of solutions.

The RM-ODP patterns of reasoning provide the architect with many useful
starting points.

RM-ODP is feature rich and will challenge industry to surpass existing
capabilities for distributed systems architecture in the areas of behavior specifica-
tion, delegation, conformance testing, and inter-domain administration: openness
(portability and interworking), integration, flexibility, modularity, federation,
manageability, QoS, security and transparency. Figure 3.18 provides a final over-
view of the parts of the viewpoint specifications, and a notional representation of
the consistency across the viewpoints. The viewpoint mechanisms, coupled with
a precise ontology for distributed processing, are powerful tools for architecting.
The rules of specification and structuring are fundamental for any architecture
endeavor. RM-ODP defines all of this.

Above all else, use of software engineering and software architecture tech-
niques, as defined in RM-ODP, complement the domain area expertise in specify-
ing an architecture. Rigorous software engineering is essential. Object technology
and architecture technology are more than programming or a topology of comput-
ers and networks. It is essential to manage the levels of abstraction for an architec-
ture specification of a system, defining the business rules, the interrelationships,
and the semantics of the system’s processing, and capturing this analysis through
a model.

ch03.fm Page 125 Wednesday, September 6, 2000 4:18 PM

126 CHAPTER 3 • RM-ODP ARCHITECT’S PRIMER

Some other benefits of RM-ODP are cited by [Holmes-94]:

◗ “A Common Language for expressing the behaviour, the problems and the
requirements for heterogeneous organisations and systems, based on interna-
tional standards

◗ A focus on externally observable behaviour rather than internal structure

◗ Support for ‘what-if’ analyses including effectiveness tradeoffs

◗ Support for evolutionary growth and technology interception”

The products of a standard such as RM-ODP are abstract. RM-ODP
attempts to provide a general model for use in specifying any distributed pro-
cessing system. It does work, but it takes a great deal of work to use the standard
accurately.

Architecting is not easy. It is very easy to get it wrong, and very hard to get
it right. Some automated tools exist that are claimed to help “architect.” But use
of a tool is only as good as the engineering and analysis that accompanies it. This
chapter has attempted to elucidate the concepts of abstraction and composition as
defined in RM-ODP, provide examples of their use, and guide the use of RM-ODP
for specific needs in the remainder of the book.

FIGURE 3.18 Overview of Viewpoint Concepts and Relationships

Information
Schema

Dynamic Schema

Static Schema

Invariant Schema

Information

Components/Objects

Interaction

Binding

Signature

Binding Object

QoS

Contract

Interface Operation

Interface Signal

Interface Stream

R
elationship rules

Computational

Objects

Cluster Node

Capsule

Transparency

Managers

Services

Local Binding

Interceptor

Control

Interface

Channel

Distributed Binding

Engineering

Conformance Reference Points

Interaction InterworkingProgrammaticPerceptual

DBMS

Technology

 ORB COM+

WAN Bridge

LAN

Server

TCP/IP

Thin Client
Java

HTML
XML

OSI

Enterprise
JavaBeans

CORBA
Components

Enterprise

Enterprise
object

Roles

Actions

QoS

Interactions

Policy

Objectives

Contract

Environment

ch03.fm Page 126 Wednesday, September 6, 2000 4:18 PM

3.4 SUMMARY 127

One can be pragmatic about the use of RM-ODP. Not everything is always
needed. One only needs to include those things that help plan the business objec-
tives, the architecture, and the system implementation for the purpose at hand. One
does need to use the terminology of RM-ODP, and the rules of specification and
structure. However, one can elect to use a subset of the viewpoints, and a subset
of the concepts and rules that make sense for the purpose at hand. However, use
of RM-ODP should be correct. In this way, a cohesive system specification will
result through the consistency constructs, from which analysis and conformance
testing can be accomplished.

In this chapter some of the concepts and use of RM-ODP have been
described. Subsequent chapters in this book provide more detail of these topics.

ch03.fm Page 127 Wednesday, September 6, 2000 4:18 PM

ch03.fm Page 128 Wednesday, September 6, 2000 4:18 PM

