
GENERATING THE
SERVER RESPONSE:
HTTP RESPONSE

HEADERS

Topics in This Chapter

• Format of the HTTP response

• Setting response headers

• Understanding what response headers are good for

• Building Excel spread sheets

• Generating JPEG images dynamically

• Sending incremental updates to the browser

CSAJSP2.book Page 194 Thursday, July 17, 2003 5:05 PM

195

7

As discussed in the previous chapter, a response from a Web server normally consists
of a status line, one or more response headers (one of which must be Content-Type),
a blank line, and the document. To get the most out of your servlets, you need to
know how to use the status line and response headers effectively, not just how to gen-
erate the document.

Setting the HTTP response headers often goes hand in hand with setting the sta-
tus codes in the status line, as discussed in the previous chapter. For example, all the
“document moved” status codes (300 through 307) have an accompanying
Location header, and a 401 (Unauthorized) code always includes an accompany-
ing WWW-Authenticate header. However, specifying headers can also play a useful
role even when no unusual status code is set. Response headers can be used to spec-
ify cookies, to supply the page modification date (for client-side caching), to instruct
the browser to reload the page after a designated interval, to give the file size so that
persistent HTTP connections can be used, to designate the type of document being
generated, and to perform many other tasks. This chapter shows how to generate
response headers, explains what the various headers are used for, and gives several
examples.

CSAJSP2.book Page 195 Thursday, July 17, 2003 5:05 PM

Chapter 7 � Generating the Server Response: HTTP Response Headers196

7.1 Setting Response Headers
from Servlets

The most general way to specify headers is to use the setHeader method of
HttpServletResponse. This method takes two strings: the header name and the
header value. As with setting status codes, you must specify headers before returning
the actual document.

• setHeader(String headerName, String headerValue)
This method sets the response header with the designated name to
the given value.

In addition to the general-purpose setHeader method, HttpServlet-
Response also has two specialized methods to set headers that contain dates and
integers:

• setDateHeader(String header, long milliseconds)
This method saves you the trouble of translating a
Java date in milliseconds since 1970 (as returned by
System.currentTimeMillis, Date.getTime, or
Calendar.getTimeInMillis) into a GMT time string.

• setIntHeader(String header, int headerValue)
This method spares you the minor inconvenience of converting an
int to a String before inserting it into a header.

HTTP allows multiple occurrences of the same header name, and you sometimes
want to add a new header rather than replace any existing header with the same
name. For example, it is quite common to have multiple Accept and Set-Cookie
headers that specify different supported MIME types and different cookies, respec-
tively. The methods setHeader, setDateHeader, and setIntHeader replace
any existing headers of the same name, whereas addHeader, addDateHeader, and
addIntHeader add a header regardless of whether a header of that name already
exists. If it matters to you whether a specific header has already been set, use
containsHeader to check.

Finally, HttpServletResponse also supplies a number of convenience meth-
ods for specifying common headers. These methods are summarized as follows.

• setContentType(String mimeType)
This method sets the Content-Type header and is used by the
majority of servlets.

CSAJSP2.book Page 196 Thursday, July 17, 2003 5:05 PM

7.2 Understanding HTTP 1.1 Response Headers 197

• setContentLength(int length)
This method sets the Content-Length header, which is useful if the
browser supports persistent (keep-alive) HTTP connections.

• addCookie(Cookie c)
This method inserts a cookie into the Set-Cookie header. There is
no corresponding setCookie method, since it is normal to have
multiple Set-Cookie lines. See Chapter 8 (Handling Cookies) for a
discussion of cookies.

• sendRedirect(String address)
As discussed in the previous chapter, the sendRedirect method sets
the Location header as well as setting the status code to 302. See
Sections 6.3 (A Servlet That Redirects Users to Browser-Specific
Pages) and 6.4 (A Front End to Various Search Engines) for examples.

7.2 Understanding HTTP 1.1
Response Headers

Following is a summary of the most useful HTTP 1.1 response headers. A good
understanding of these headers can increase the effectiveness of your servlets, so you
should at least skim the descriptions to see what options are at your disposal. You can
come back for details when you are ready to use the capabilities.

These headers are a superset of those permitted in HTTP 1.0. The official HTTP
1.1 specification is given in RFC 2616. The RFCs are online in various places; your
best bet is to start at http://www.rfc-editor.org/ to get a current list of the archive
sites. Header names are not case sensitive but are traditionally written with the first
letter of each word capitalized.

Be cautious in writing servlets whose behavior depends on response headers that
are available only in HTTP 1.1, especially if your servlet needs to run on the WWW
“at large” rather than on an intranet—some older browsers support only HTTP 1.0.
It is best to explicitly check the HTTP version with request.getRequest-
Protocol before using HTTP-1.1-specific headers.

Allow
The Allow header specifies the request methods (GET, POST, etc.) that the
server supports. It is required for 405 (Method Not Allowed) responses.
The default service method of servlets automatically generates this header
for OPTIONS requests.

CSAJSP2.book Page 197 Thursday, July 17, 2003 5:05 PM

Chapter 7 � Generating the Server Response: HTTP Response Headers198

Cache-Control
This useful header tells the browser or other client the circumstances in which
the response document can safely be cached. It has the following possible
values.

• public. Document is cacheable, even if normal rules (e.g., for
password-protected pages) indicate that it shouldn’t be.

• private. Document is for a single user and can only be stored in
private (nonshared) caches.

• no-cache. Document should never be cached (i.e., used
to satisfy a later request). The server can also specify
“no-cache="header1,header2,...,headerN"” to stipulate the
headers that should be omitted if a cached response is later used.
Browsers normally do not cache documents that were retrieved by
requests that include form data. However, if a servlet generates
different content for different requests even when the requests
contain no form data, it is critical to tell the browser not to cache
the response. Since older browsers use the Pragma header for this
purpose, the typical servlet approach is to set both headers, as in
the following example.

response.setHeader("Cache-Control", "no-cache");

response.setHeader("Pragma", "no-cache");

• no-store. Document should never be cached and should not even
be stored in a temporary location on disk. This header is intended to
prevent inadvertent copies of sensitive information.

• must-revalidate. Client must revalidate document with original
server (not just intermediate proxies) each time it is used.

• proxy-revalidate. This is the same as must-revalidate,
except that it applies only to shared caches.

• max-age=xxx. Document should be considered stale after xxx
seconds. This is a convenient alternative to the Expires header but
only works with HTTP 1.1 clients. If both max-age and Expires are
present in the response, the max-age value takes precedence.

• s-max-age=xxx. Shared caches should consider the document stale
after xxx seconds.

The Cache-Control header is new in HTTP 1.1.

Connection
A value of close for this response header instructs the browser not to
use persistent HTTP connections. Technically, persistent connections
are the default when the client supports HTTP 1.1 and does not specify a

CSAJSP2.book Page 198 Thursday, July 17, 2003 5:05 PM

7.2 Understanding HTTP 1.1 Response Headers 199

Connection: close request header (or when an HTTP 1.0 client speci-
fies Connection: keep-alive). However, since persistent connections
require a Content-Length response header, there is no reason for a servlet
to explicitly use the Connection header. Just omit the Content-Length
header if you aren’t using persistent connections.

Content-Disposition
The Content-Disposition header lets you request that the browser ask
the user to save the response to disk in a file of the given name. It is used as
follows:

Content-Disposition: attachment; filename=some-file-name

This header is particularly useful when you send the client non-HTML
responses (e.g., Excel spreadsheets as in Section 7.3 or JPEG images as in Sec-
tion 7.5). Content-Disposition was not part of the original HTTP specifi-
cation; it was defined later in RFC 2183. Recall that you can download RFCs
by going to http://rfc-editor.org/ and following the instructions.

Content-Encoding
This header indicates the way in which the page was encoded during transmis-
sion. The browser should reverse the encoding before deciding what to do with
the document. Compressing the document with gzip can result in huge savings
in transmission time; for an example, see Section 5.4 (Sending Compressed
Web Pages).

Content-Language
The Content-Language header signifies the language in which the docu-
ment is written. The value of the header should be one of the standard
language codes such as en, en-us, da, etc. See RFC 1766 for details on lan-
guage codes (you can access RFCs online at one of the archive sites listed at
http://www.rfc-editor.org/).

Content-Length
This header indicates the number of bytes in the response. This information is
needed only if the browser is using a persistent (keep-alive) HTTP connection.
See the Connection header for determining when the browser supports persis-
tent connections. If you want your servlet to take advantage of persistent connec-
tions when the browser supports them, your servlet should write the document
into a ByteArrayOutputStream, look up its size when done, put that into the
Content-Length field with response.setContentLength, then send the
content by byteArrayStream.writeTo(response.getOutputStream()).

CSAJSP2.book Page 199 Thursday, July 17, 2003 5:05 PM

Chapter 7 � Generating the Server Response: HTTP Response Headers200

Content-Type

The Content-Type header gives the MIME (Multipurpose Internet Mail
Extension) type of the response document. Setting this header is so
common that there is a special method in HttpServletResponse for it:
setContentType. MIME types are of the form maintype/subtype for
officially registered types and of the form maintype/x-subtype for unreg-
istered types. Most servlets specify text/html; they can, however, specify
other types instead. This is important partly because servlets directly gener-
ate other MIME types (as in the Excel and JPEG examples of this chapter),
but also partly because servlets are used as the glue to connect other applica-
tions to the Web. OK, so you have Adobe Acrobat to generate PDF, Ghost-
Script to generate PostScript, and a database application to search indexed
MP3 files. But you still need a servlet to answer the HTTP request, invoke
the helper application, and set the Content-Type header, even though the
servlet probably simply passes the output of the helper application directly to
the client.

In addition to a basic MIME type, the Content-Type header can also desig-
nate a specific character encoding. If this is not specified, the default is
ISO-8859_1 (Latin). For example, the following instructs the browser to
interpret the document as HTML in the Shift_JIS (standard Japanese)
character set.

response.setContentType("text/html; charset=Shift_JIS");

Table 7.1 lists some of the most common MIME types used by servlets.
RFC 1521 and RFC 1522 list more of the common MIME types (again, see
http://www.rfc-editor.org/ for a list of RFC archive sites). However, new
MIME types are registered all the time, so a dynamic list is a better place to
look. The officially registered types are listed at http://www.isi.edu/in-notes/
iana/assignments/media-types/media-types. For common unregistered
types, http://www.ltsw.se/knbase/internet/mime.htp is a good source.

Table 7.1 Common MIME Types

Type Meaning

application/msword Microsoft Word document

application/octet-stream Unrecognized or binary data

application/pdf Acrobat (.pdf) file

application/postscript PostScript file

CSAJSP2.book Page 200 Thursday, July 17, 2003 5:05 PM

7.2 Understanding HTTP 1.1 Response Headers 201

Type Meaning

application/vnd.lotus-notes Lotus Notes file

application/vnd.ms-excel Excel spreadsheet

application/vnd.ms-powerpoint PowerPoint presentation

application/x-gzip Gzip archive

application/x-java-archive JAR file

application/x-java-serialized-object Serialized Java object

application/x-java-vm Java bytecode (.class) file

application/zip Zip archive

audio/basic Sound file in .au or .snd format

audio/midi MIDI sound file

audio/x-aiff AIFF sound file

audio/x-wav Microsoft Windows sound file

image/gif GIF image

image/jpeg JPEG image

image/png PNG image

image/tiff TIFF image

image/x-xbitmap X Windows bitmap image

text/css HTML cascading style sheet

text/html HTML document

text/plain Plain text

text/xml XML

video/mpeg MPEG video clip

video/quicktime QuickTime video clip

Table 7.1 Common MIME Types (continued)

CSAJSP2.book Page 201 Thursday, July 17, 2003 5:05 PM

Chapter 7 � Generating the Server Response: HTTP Response Headers202

Expires
This header stipulates the time at which the content should be considered
out-of-date and thus no longer be cached. A servlet might use this header for a
document that changes relatively frequently, to prevent the browser from dis-
playing a stale cached value. Furthermore, since some older browsers support
Pragma unreliably (and Cache-Control not at all), an Expires header with
a date in the past is often used to prevent browser caching. However, some
browsers ignore dates before January 1, 1980, so do not use 0 as the value of
the Expires header.

For example, the following would instruct the browser not to cache the docu-
ment for more than 10 minutes.

long currentTime = System.currentTimeMillis();

long tenMinutes = 10*60*1000; // In milliseconds

response.setDateHeader("Expires",

currentTime + tenMinutes);

Also see the max-age value of the Cache-Control header.

Last-Modified
This very useful header indicates when the document was last changed. The client
can then cache the document and supply a date by an If-Modified-Since
request header in later requests. This request is treated as a conditional GET, with
the document being returned only if the Last-Modified date is later than the
one specified for If-Modified-Since. Otherwise, a 304 (Not Modified)
status line is returned, and the client uses the cached document. If you set this
header explicitly, use the setDateHeader method to save yourself the bother
of formatting GMT date strings. However, in most cases you simply implement
the getLastModified method (see the lottery number servlet of Section 3.6,
“The Servlet Life Cycle”) and let the standard service method handle
If-Modified-Since requests.

Location
This header, which should be included with all responses that have a status code
in the 300s, notifies the browser of the document address. The browser automat-
ically reconnects to this location and retrieves the new document. This header is
usually set indirectly, along with a 302 status code, by the sendRedirect
method of HttpServletResponse. See Sections 6.3 (A Servlet That Redirects
Users to Browser-Specific Pages) and 6.4 (A Front End to Various Search
Engines) for examples.

CSAJSP2.book Page 202 Thursday, July 17, 2003 5:05 PM

7.2 Understanding HTTP 1.1 Response Headers 203

Pragma
Supplying this header with a value of no-cache instructs HTTP 1.0 clients not
to cache the document. However, support for this header was inconsistent with
HTTP 1.0 browsers, so Expires with a date in the past is often used instead.
In HTTP 1.1, Cache-Control: no-cache is a more reliable replacement.

Refresh
This header indicates how soon (in seconds) the browser should ask for an
updated page. For example, to tell the browser to ask for a new copy in 30 sec-
onds, you would specify a value of 30 with

response.setIntHeader("Refresh", 30);

Note that Refresh does not stipulate continual updates; it just specifies
when the next update should be. So, you have to continue to supply Refresh
in all subsequent responses. This header is extremely useful because it lets
servlets return partial results quickly while still letting the client see the com-
plete results at a later time. For an example, see Section 7.4 (Persistent Servlet
State and Auto-Reloading Pages).

Instead of having the browser just reload the current page, you can specify the
page to load. You do this by supplying a semicolon and a URL after the refresh
time. For example, to tell the browser to go to http://host/path after 5 seconds,
you would do the following.

response.setHeader("Refresh", "5; URL=http://host/path/");

This setting is useful for “splash screens” on which an introductory image or
message is displayed briefly before the real page is loaded.

Note that this header is commonly set indirectly by putting

<META HTTP-EQUIV="Refresh"
CONTENT="5; URL=http://host/path/">

in the HEAD section of the HTML page, rather than as an explicit header from
the server. That usage came about because automatic reloading or forwarding
is something often desired by authors of static HTML pages. For servlets, how-
ever, setting the header directly is easier and clearer.

This header is not officially part of HTTP 1.1 but is an extension supported by
both Netscape and Internet Explorer.

Retry-After
This header can be used in conjunction with a 503 (Service Unavailable)
response to tell the client how soon it can repeat its request.

CSAJSP2.book Page 203 Thursday, July 17, 2003 5:05 PM

Chapter 7 � Generating the Server Response: HTTP Response Headers204

Set-Cookie
The Set-Cookie header specifies a cookie associated with the page. Each
cookie requires a separate Set-Cookie header. Servlets should not use
response.setHeader("Set-Cookie", ...) but instead should use the
special-purpose addCookie method of HttpServletResponse. For
details, see Chapter 8 (Handling Cookies). Technically, Set-Cookie is not
part of HTTP 1.1. It was originally a Netscape extension but is now widely sup-
ported, including in both Netscape and Internet Explorer.

WWW-Authenticate
This header is always included with a 401 (Unauthorized) status code. It tells
the browser what authorization type (BASIC or DIGEST) and realm the client
should supply in its Authorization header. For examples of the use of
WWW-Authenticate and a discussion of the various security mechanisms
available to servlets and JSP pages, see the chapters on Web application secu-
rity in Volume 2 of this book.

7.3 Building Excel Spreadsheets

Although servlets usually generate HTML output, they are not required to do so.
HTTP is fundamental to servlets; HTML is not. Now, it is sometimes useful to gener-
ate Microsoft Excel content so that users can save the results in a report and so that
you can make use of the built-in formula support in Excel. Excel accepts input in at
least three distinct formats: tab-separated data, HTML tables, and a native binary
format.

In this section, we illustrate the use of tab-separated data to generate spread-
sheets. In Chapter 12 (Controlling the Structure of Generated Servlets: The JSP
page Directive), we show how to build Excel spreadsheets by using HTML-table
format. No matter the format, the key is to use the Content-Type response
header to tell the client that you are sending a spreadsheet. You use the shorthand
setContentType method to set the Content-Type header, and the MIME type
for Excel spreadsheets is application/vnd.ms-excel. So, to generate Excel
spreadsheets, just do:

response.setContentType("application/vnd.ms-excel");
PrintWriter out = response.getWriter();

Then, simply print some entries with tabs (\t in Java strings) in between. That’s it: no
DOCTYPE, no HEAD, no BODY: those are all HTML-specific things.

CSAJSP2.book Page 204 Thursday, July 17, 2003 5:05 PM

7.3 Building Excel Spreadsheets 205

Listing 7.1 presents a simple servlet that builds an Excel spreadsheet that com-
pares apples and oranges. Note that =SUM(col:col) sums a range of columns in
Excel. Figure 7–1 shows the results.

Figure 7–1 Result of the ApplesAndOranges servlet in Internet Explorer on a system
that has Microsoft Office installed.

Listing 7.1 ApplesAndOranges.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that creates Excel spreadsheet comparing
 * apples and oranges.
 */

public class ApplesAndOranges extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("application/vnd.ms-excel");
 PrintWriter out = response.getWriter();
 out.println("\tQ1\tQ2\tQ3\tQ4\tTotal");
 out.println("Apples\t78\t87\t92\t29\t=SUM(B2:E2)");
 out.println("Oranges\t77\t86\t93\t30\t=SUM(B3:E3)");
 }
}

CSAJSP2.book Page 205 Thursday, July 17, 2003 5:05 PM

Chapter 7 � Generating the Server Response: HTTP Response Headers206

7.4 Persistent Servlet State
and Auto-Reloading Pages

Suppose your servlet or JSP page performs a calculation that takes a long time to
complete: say, 20 seconds or more. In such a case, it is not reasonable to complete
the computation and then send the results to the client—by that time the client may
have given up and left the page or, worse, have hit the Reload button and restarted
the process. To deal with requests that take a long time to process (or whose results
periodically change), you need the following capabilities:

• A way to store data between requests. For data that is not
specific to any one client, store it in a field (instance variable)
of the servlet. For data that is specific to a user, store it in the
HttpSession object (see Chapter 9, “Session Tracking”). For data
that needs to be available to other servlets or JSP pages, store it in
the ServletContext (see the section on sharing data in Chapter
14, “Using JavaBeans Components in JSP Documents”).

• A way to keep computations running after the response is sent
to the user. This task is simple: just start a Thread. The thread
started by the system to answer requests automatically finishes when
the response is finished, but other threads can keep running. The only
subtlety: set the thread priority to a low value so that you do not slow
down the server.

• A way to get the updated results to the browser when they are
ready. Unfortunately, because browsers do not maintain an open
connection to the server, there is no easy way for the server to
proactively send the new results to the browser. Instead, the browser
needs to be told to ask for updates. That is the purpose of the
Refresh response header.

Finding Prime Numbers for
Use with Public Key Cryptography

Here is an example that lets you ask for a list of some large, randomly chosen prime
numbers. As you are probably aware, access to large prime numbers is the key to
most public-key cryptography systems, the kind of encryption systems used on the
Web (e.g., for SSL and X509 certificates). Finding prime numbers may take some
time for very large numbers (e.g., 100 digits), so the servlet immediately returns

CSAJSP2.book Page 206 Thursday, July 17, 2003 5:05 PM

7.4 Persistent Servlet State and Auto-Reloading Pages 207

initial results but then keeps calculating, using a low-priority thread so that it won’t
degrade Web server performance. If the calculations are not complete, the servlet
instructs the browser to ask for a new page in a few seconds by sending it a Refresh
header.

In addition to illustrating the value of HTTP response headers (Refresh in this
case), this example shows two other valuable servlet capabilities. First, it shows that
the same servlet can handle multiple simultaneous connections, each with its own
thread. So, while one thread is finishing a calculation for one client, another client
can connect and still see partial results.

Second, this example shows how easy it is for servlets to maintain state between
requests, something that is cumbersome to implement in most competing technolo-
gies (even .NET, which is perhaps the best of the alternatives). Only a single instance
of the servlet is created, and each request simply results in a new thread calling the
servlet’s service method (which calls doGet or doPost). So, shared data simply
has to be placed in a regular instance variable (field) of the servlet. Thus, the servlet
can access the appropriate ongoing calculation when the browser reloads the page
and can keep a list of the N most recently requested results, returning them immedi-
ately if a new request specifies the same parameters as a recent one. Of course, the
normal rules that require authors to synchronize multithreaded access to shared data
still apply to servlets. Servlets can also store persistent data in the ServletContext
object that is available through the getServletContext method. ServletContext
has setAttribute and getAttribute methods that let you store arbitrary data
associated with specified keys. The difference between storing data in instance vari-
ables and storing it in the ServletContext is that the ServletContext is shared
by all servlets and JSP pages in the Web application.

Listing 7.2 shows the main servlet class. First, it receives a request that specifies
two parameters: numPrimes and numDigits. These values are normally collected
from the user and sent to the servlet by means of a simple HTML form. Listing 7.3
shows the source code and Figure 7–2 shows the result. Next, these parameters are
converted to integers by means of a simple utility that uses Integer.parseInt
(see Listing 7.6). These values are then matched by the findPrimeList method to
an ArrayList of recent or ongoing calculations to see if a previous computation cor-
responds to the same two values. If so, that previous value (of type PrimeList) is
used; otherwise, a new PrimeList is created and stored in the ongoing-calculations
Vector, potentially displacing the oldest previous list. Next, that PrimeList is
checked to determine whether it has finished finding all of its primes. If not, the cli-
ent is sent a Refresh header to tell it to come back in five seconds for updated
results. Either way, a bulleted list of the current values is returned to the client. See
Figures 7–3 through 7–5 for representative results.

CSAJSP2.book Page 207 Thursday, July 17, 2003 5:05 PM

Chapter 7 � Generating the Server Response: HTTP Response Headers208

Listing 7.2 PrimeNumberServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Servlet that processes a request to generate n
 * prime numbers, each with at least m digits.
 * It performs the calculations in a low-priority background
 * thread, returning only the results it has found so far.
 * If these results are not complete, it sends a Refresh
 * header instructing the browser to ask for new results a
 * little while later. It also maintains a list of a
 * small number of previously calculated prime lists
 * to return immediately to anyone who supplies the
 * same n and m as a recently completed computation.
 */

public class PrimeNumberServlet extends HttpServlet {
 private ArrayList primeListCollection = new ArrayList();
 private int maxPrimeLists = 30;

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 int numPrimes =
 ServletUtilities.getIntParameter(request,
 "numPrimes", 50);
 int numDigits =
 ServletUtilities.getIntParameter(request,
 "numDigits", 120);
 PrimeList primeList =
 findPrimeList(primeListCollection, numPrimes, numDigits);
 if (primeList == null) {
 primeList = new PrimeList(numPrimes, numDigits, true);
 // Multiple servlet request threads share the instance
 // variables (fields) of PrimeNumbers. So
 // synchronize all access to servlet fields.
 synchronized(primeListCollection) {
 if (primeListCollection.size() >= maxPrimeLists)
 primeListCollection.remove(0);
 primeListCollection.add(primeList);
 }
 }
 ArrayList currentPrimes = primeList.getPrimes();
 int numCurrentPrimes = currentPrimes.size();
 int numPrimesRemaining = (numPrimes - numCurrentPrimes);

CSAJSP2.book Page 208 Thursday, July 17, 2003 5:05 PM

7.4 Persistent Servlet State and Auto-Reloading Pages 209

 boolean isLastResult = (numPrimesRemaining == 0);
 if (!isLastResult) {
 response.setIntHeader("Refresh", 5);
 }
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Some " + numDigits + "-Digit Prime Numbers";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H2 ALIGN=CENTER>" + title + "</H2>\n" +
 "<H3>Primes found with " + numDigits +
 " or more digits: " + numCurrentPrimes +
 ".</H3>");
 if (isLastResult)
 out.println("Done searching.");
 else
 out.println("Still looking for " + numPrimesRemaining +
 " more<BLINK>...</BLINK>");
 out.println("");
 for(int i=0; i<numCurrentPrimes; i++) {
 out.println(" " + currentPrimes.get(i));
 }
 out.println("");
 out.println("</BODY></HTML>");
 }

 // See if there is an existing ongoing or completed
 // calculation with the same number of primes and number
 // of digits per prime. If so, return those results instead
 // of starting a new background thread. Keep this list
 // small so that the Web server doesn't use too much memory.
 // Synchronize access to the list since there may be
 // multiple simultaneous requests.

 private PrimeList findPrimeList(ArrayList primeListCollection,
 int numPrimes,
 int numDigits) {
 for(int i=0; i<primeListCollection.size(); i++) {
 PrimeList primes =
 (PrimeList)primeListCollection.get(i);
 synchronized(primeListCollection) {
 if ((numPrimes == primes.numPrimes()) &&
 (numDigits == primes.numDigits()))
 return(primes);
 }
 return(null);
 }
 }
}

Listing 7.2 PrimeNumberServlet.java (continued)

CSAJSP2.book Page 209 Thursday, July 17, 2003 5:05 PM

Chapter 7 � Generating the Server Response: HTTP Response Headers210

Figure 7–2 Front end to the prime-number-generation servlet.

Listing 7.3 PrimeNumbers.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Finding Large Prime Numbers</TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H2>Finding Large Prime Numbers</H2>

<FORM ACTION="/servlet/coreservlets.PrimeNumberServlet">
 Number of primes to calculate:
 <INPUT TYPE="TEXT" NAME="numPrimes" VALUE=25 SIZE=4>

 Number of digits:
 <INPUT TYPE="TEXT" NAME="numDigits" VALUE=150 SIZE=3>

 <INPUT TYPE="SUBMIT" VALUE="Start Calculating">
</FORM>
</CENTER>
</BODY></HTML>

CSAJSP2.book Page 210 Thursday, July 17, 2003 5:05 PM

7.4 Persistent Servlet State and Auto-Reloading Pages 211

Figure 7–3 Initial results of the prime-number-generation servlet. A quick result is sent
to the browser, along with instructions (in the Refresh header) to reconnect for an
update in five seconds.

Figure 7–4 Intermediate results of the prime-number-generation servlet. The servlet
stores the previous computations and matches the current request with the stored values
by comparing the request parameters (the size and number of primes to compute). Other
clients that request the same parameters see the same already computed results.

CSAJSP2.book Page 211 Thursday, July 17, 2003 5:05 PM

Chapter 7 � Generating the Server Response: HTTP Response Headers212

Figure 7–5 Final results of the prime-number-generation servlet. Since the servlet has
computed as many primes as the user requested, no Refresh header is sent to the
browser and the page is no longer reloaded automatically.

Listings 7.4 (PrimeList.java) and 7.5 (Primes.java) present auxiliary code used by
the servlet. PrimeList.java handles the background thread for the creation of a list
of primes for a specific set of values. The point of this example is twofold: that serv-
lets can maintain data between requests by storing it in instance variables (or the
ServletContext) and that the servlet can use the Refresh header to instruct the
browser to return for updates. However, if you care about the gory details of
prime-number generation, Primes.java contains the low-level algorithms for choos-
ing a random number of a specified length and then finding a prime at or above that
value. It uses built-in methods in the BigInteger class; the algorithm for determin-
ing if the number is prime is a probabilistic one and thus has a chance of being mis-
taken. However, the probability of being wrong can be specified, and we use an error
value of 100. Assuming that the algorithm used in most Java implementations is the

CSAJSP2.book Page 212 Thursday, July 17, 2003 5:05 PM

7.4 Persistent Servlet State and Auto-Reloading Pages 213

Miller-Rabin test, the likelihood of falsely reporting a composite (i.e., non-prime)
number as prime is provably less than 2100. This is almost certainly smaller than the
likelihood of a hardware error or random radiation causing an incorrect response in a
deterministic algorithm, and thus the algorithm can be considered deterministic.

Listing 7.4 PrimeList.java

package coreservlets;

import java.util.*;
import java.math.BigInteger;

/** Creates an ArrayList of large prime numbers, usually in
 * a low-priority background thread. Provides a few small
 * thread-safe access methods.
 */

public class PrimeList implements Runnable {
 private ArrayList primesFound;
 private int numPrimes, numDigits;

 /** Finds numPrimes prime numbers, each of which is
 * numDigits long or longer. You can set it to return
 * only when done, or have it return immediately,
 * and you can later poll it to see how far it
 * has gotten.
 */

 public PrimeList(int numPrimes, int numDigits,
 boolean runInBackground) {
 primesFound = new ArrayList(numPrimes);
 this.numPrimes = numPrimes;
 this.numDigits = numDigits;
 if (runInBackground) {
 Thread t = new Thread(this);
 // Use low priority so you don't slow down server.
 t.setPriority(Thread.MIN_PRIORITY);
 t.start();
 } else {
 run();
 }
 }

CSAJSP2.book Page 213 Thursday, July 17, 2003 5:05 PM

Chapter 7 � Generating the Server Response: HTTP Response Headers214

 public void run() {
 BigInteger start = Primes.random(numDigits);
 for(int i=0; i<numPrimes; i++) {
 start = Primes.nextPrime(start);
 synchronized(this) {
 primesFound.add(start);
 }
 }
 }

 public synchronized boolean isDone() {
 return(primesFound.size() == numPrimes);
 }

 public synchronized ArrayList getPrimes() {
 if (isDone())
 return(primesFound);
 else
 return((ArrayList)primesFound.clone());
 }

 public int numDigits() {
 return(numDigits);
 }

 public int numPrimes() {
 return(numPrimes);
 }

 public synchronized int numCalculatedPrimes() {
 return(primesFound.size());
 }
}

Listing 7.4 PrimeList.java (continued)

CSAJSP2.book Page 214 Thursday, July 17, 2003 5:05 PM

7.4 Persistent Servlet State and Auto-Reloading Pages 215

Listing 7.5 Primes.java

package coreservlets;

import java.math.BigInteger;

/** A few utilities to generate a large random BigInteger,
 * and find the next prime number above a given BigInteger.
 */

public class Primes {
 // Note that BigInteger.ZERO and BigInteger.ONE are
 // unavailable in JDK 1.1.
 private static final BigInteger ZERO = BigInteger.ZERO;
 private static final BigInteger ONE = BigInteger.ONE;
 private static final BigInteger TWO = new BigInteger("2");

 // Likelihood of false prime is less than 1/2^ERR_VAL.
 // Presumably BigInteger uses the Miller-Rabin test or
 // equivalent, and thus is NOT fooled by Carmichael numbers.
 // See section 33.8 of Cormen et al.'s Introduction to
 // Algorithms for details.
 private static final int ERR_VAL = 100;

 public static BigInteger nextPrime(BigInteger start) {
 if (isEven(start))
 start = start.add(ONE);
 else
 start = start.add(TWO);
 if (start.isProbablePrime(ERR_VAL))
 return(start);
 else
 return(nextPrime(start));
 }

 private static boolean isEven(BigInteger n) {
 return(n.mod(TWO).equals(ZERO));
 }

 private static StringBuffer[] digits =
 { new StringBuffer("0"), new StringBuffer("1"),
 new StringBuffer("2"), new StringBuffer("3"),
 new StringBuffer("4"), new StringBuffer("5"),
 new StringBuffer("6"), new StringBuffer("7"),
 new StringBuffer("8"), new StringBuffer("9") };

CSAJSP2.book Page 215 Thursday, July 17, 2003 5:05 PM

Chapter 7 � Generating the Server Response: HTTP Response Headers216

 private static StringBuffer randomDigit(boolean isZeroOK) {
 int index;
 if (isZeroOK) {
 index = (int)Math.floor(Math.random() * 10);
 } else {
 index = 1 + (int)Math.floor(Math.random() * 9);
 }
 return(digits[index]);
 }

 /** Create a random big integer where every digit is
 * selected randomly (except that the first digit
 * cannot be a zero).
 */

 public static BigInteger random(int numDigits) {
 StringBuffer s = new StringBuffer("");
 for(int i=0; i<numDigits; i++) {
 if (i == 0) {
 // First digit must be non-zero.
 s.append(randomDigit(false));
 } else {
 s.append(randomDigit(true));
 }
 }
 return(new BigInteger(s.toString()));
 }

 /** Simple command-line program to test. Enter number
 * of digits, and the program picks a random number of that
 * length and then prints the first 50 prime numbers
 * above that.
 */

 public static void main(String[] args) {
 int numDigits;
 try {
 numDigits = Integer.parseInt(args[0]);
 } catch (Exception e) { // No args or illegal arg.
 numDigits = 150;
 }
 BigInteger start = random(numDigits);
 for(int i=0; i<50; i++) {
 start = nextPrime(start);
 System.out.println("Prime " + i + " = " + start);
 }
 }
}

Listing 7.5 Primes.java (continued)

CSAJSP2.book Page 216 Thursday, July 17, 2003 5:05 PM

7.5 Using Servlets to Generate JPEG Images 217

7.5 Using Servlets to
Generate JPEG Images

Although servlets often generate HTML output, they certainly don’t always do so.
For example, Section 7.3 (Building Excel Spreadsheets) shows a servlet that builds
Excel spreadsheets and returns them to the client. Here, we show you how to gener-
ate JPEG images.

First, let us summarize the two main steps servlets have to perform to build multi-
media content.

Listing 7.6 ServletUtilities.java (Excerpt)

package coreservlets;

import javax.servlet.*;
import javax.servlet.http.*;

/** Some simple time savers. Note that most are static methods. */

public class ServletUtilities {
// ...

/** Read a parameter with the specified name, convert it
 * to an int, and return it. Return the designated default
 * value if the parameter doesn't exist or if it is an
 * illegal integer format.
 */

 public static int getIntParameter(HttpServletRequest request,
 String paramName,
 int defaultValue) {
 String paramString = request.getParameter(paramName);
 int paramValue;
 try {
 paramValue = Integer.parseInt(paramString);
 } catch(NumberFormatException nfe) { // null or bad format
 paramValue = defaultValue;
 }
 return(paramValue);
 }
}

CSAJSP2.book Page 217 Thursday, July 17, 2003 5:05 PM

Chapter 7 � Generating the Server Response: HTTP Response Headers218

1. Inform the browser of the content type they are sending. To
accomplish this task, servlets set the Content-Type response header
by using the setContentType method of HttpServletResponse.

2. Send the output in the appropriate format. This format varies
among document types, of course, but in most cases you send
binary data, not strings as you do with HTML documents. Conse-
quently, servlets will usually get the raw output stream by using the
getOutputStream method, rather than getting a PrintWriter
by using getWriter.

Putting these two steps together, servlets that generate non-HTML content usu-
ally have a section of their doGet or doPost method that looks like this:

response.setContentType("type/subtype");
OutputStream out = response.getOutputStream();

Those are the two general steps required to build non-HTML content. Next, let’s
look at the specific steps required to generate JPEG images.

1. Create a BufferedImage.
You create a java.awt.image.BufferedImage object by calling
the BufferedImage constructor with a width, a height, and an
image representation type as defined by one of the constants in the
BufferedImage class. The representation type is not important,
since we do not manipulate the bits of the BufferedImage directly
and since most types yield identical results when converted to JPEG.
We use TYPE_INT_RGB. Putting this all together, here is the normal
process:

int width = ...;

int height = ...;

BufferedImage image =

new BufferedImage(width, height,

BufferedImage.TYPE_INT_RGB);

2. Draw into the BufferedImage.
You accomplish this task by calling the image’s getGraphics
method, casting the resultant Graphics object to Graphics2D, then
making use of Java 2D’s rich set of drawing operations, coordinate
transformations, font settings, and fill patterns to perform the draw-
ing. Here is a simple example.

Graphics2D g2d = (Graphics2D)image.getGraphics();

g2d.setXxx(...);

g2d.fill(someShape);
g2d.draw(someShape);

CSAJSP2.book Page 218 Thursday, July 17, 2003 5:05 PM

7.5 Using Servlets to Generate JPEG Images 219

3. Set the Content-Type response header.
As already discussed, you use the setContentType method of
HttpServletResponse for this task. The MIME type for JPEG
images is image/jpeg. Thus, the code is as follows.

response.setContentType("image/jpeg");

4. Get an output stream.
As discussed previously, if you are sending binary data, you should call
the getOutputStream method of HttpServletResponse rather
than the getWriter method. For instance:

OutputStream out = response.getOutputStream();

5. Send the BufferedImage in JPEG format to the output stream.
Before JDK 1.4, accomplishing this task yourself required quite a bit
of work. So, most people used a third-party utility for this purpose. In
JDK 1.4 and later, however, the ImageIO class greatly simplifies this
task. If you are using an application server that supports J2EE 1.4
(which includes servlets 2.4 and JSP 2.0), you are guaranteed to have
JDK 1.4 or later. However, standalone servers are not absolutely
required to use JDK 1.4, so be aware that this code depends on
the Java version. When you use the ImageIO class, you just pass a
BufferedImage, an image format type ("jpg", "png", etc.—call
ImageIO.getWriterFormatNames for a complete list), and either
an OutputStream or a File to the write method of ImageIO.
Except for catching the required IOException, that’s it! For example:

try {

ImageIO.write(image, "jpg", out);

} catch(IOException ioe) {

System.err.println("Error writing JPEG file: " + ioe);

}

Listing 7.7 shows a servlet that reads message, fontName, and fontSize
parameters and passes them to the MessageImage utility (Listing 7.8) to create a
JPEG image showing the message in the designated face and size, with a gray,
oblique-shadowed version of the message shown behind the main string. If the user
presses the Show Font List button, then instead of building an image, the servlet dis-
plays a list of font names available on the server.

CSAJSP2.book Page 219 Thursday, July 17, 2003 5:05 PM

Chapter 7 � Generating the Server Response: HTTP Response Headers220

Listing 7.7 ShadowedText.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.awt.*;

/** Servlet that generates JPEG images representing
 * a designated message with an oblique-shadowed
 * version behind it.
 */

public class ShadowedText extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String wantsList = request.getParameter("showList");
 if (wantsList != null) {
 showFontList(response);
 } else {
 String message = request.getParameter("message");
 if ((message == null) || (message.length() == 0)) {
 message = "Missing 'message' parameter";
 }
 String fontName = request.getParameter("fontName");
 if ((fontName == null) || (fontName.length() == 0)) {
 fontName = "Serif";
 }
 String fontSizeString = request.getParameter("fontSize");
 int fontSize;
 try {
 fontSize = Integer.parseInt(fontSizeString);
 } catch(NumberFormatException nfe) {
 fontSize = 90;
 }
 response.setContentType("image/jpeg");
 MessageImage.writeJPEG
 (MessageImage.makeMessageImage(message,
 fontName,
 fontSize),
 response.getOutputStream());
 }
 }

CSAJSP2.book Page 220 Thursday, July 17, 2003 5:05 PM

7.5 Using Servlets to Generate JPEG Images 221

 private void showFontList(HttpServletResponse response)
 throws IOException {
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 String title = "Fonts Available on Server";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 "");
 String[] fontNames = MessageImage.getFontNames();
 for(int i=0; i<fontNames.length; i++) {
 out.println(" " + fontNames[i]);
 }
 out.println("\n" +
 "</BODY></HTML>");
 }
}

Listing 7.8 MessageImage.java

package coreservlets;

import java.awt.*;
import java.awt.geom.*;
import java.awt.image.*;
import java.io.*;
import javax.imageio.*;

/** Utilities for building images showing shadowed messages.
 * <P>
 * Requires JDK 1.4 since it uses the ImageIO class.
 * JDK 1.4 is standard with J2EE-compliant app servers
 * with servlets 2.4 and JSP 2.0. However, standalone
 * servlet/JSP engines require only JDK 1.3 or later, and
 * version 2.3 of the servlet spec requires only JDK
 * 1.2 or later. So, although most servers run on JDK 1.4,
 * this code is not necessarily portable across all servers.
 */

Listing 7.7 ShadowedText.java (continued)

CSAJSP2.book Page 221 Thursday, July 17, 2003 5:05 PM

Chapter 7 � Generating the Server Response: HTTP Response Headers222

public class MessageImage {

 /** Creates an Image of a string with an oblique
 * shadow behind it. Used by the ShadowedText servlet.
 */

 public static BufferedImage makeMessageImage(String message,
 String fontName,
 int fontSize) {

 Font font = new Font(fontName, Font.PLAIN, fontSize);
 FontMetrics metrics = getFontMetrics(font);
 int messageWidth = metrics.stringWidth(message);
 int baselineX = messageWidth/10;
 int width = messageWidth+2*(baselineX + fontSize);
 int height = fontSize*7/2;
 int baselineY = height*8/10;
 BufferedImage messageImage =
 new BufferedImage(width, height,
 BufferedImage.TYPE_INT_RGB);
 Graphics2D g2d = (Graphics2D)messageImage.getGraphics();
 g2d.setBackground(Color.white);
 g2d.clearRect(0, 0, width, height);
 g2d.setFont(font);
 g2d.translate(baselineX, baselineY);
 g2d.setPaint(Color.lightGray);
 AffineTransform origTransform = g2d.getTransform();
 g2d.shear(-0.95, 0);
 g2d.scale(1, 3);
 g2d.drawString(message, 0, 0);
 g2d.setTransform(origTransform);
 g2d.setPaint(Color.black);
 g2d.drawString(message, 0, 0);
 return(messageImage);
 }

 public static void writeJPEG(BufferedImage image,
 OutputStream out) {
 try {
 ImageIO.write(image, "jpg", out);
 } catch(IOException ioe) {
 System.err.println("Error outputting JPEG: " + ioe);
 }
 }

Listing 7.8 MessageImage.java (continued)

CSAJSP2.book Page 222 Thursday, July 17, 2003 5:05 PM

7.5 Using Servlets to Generate JPEG Images 223

Listing 7.9 (Figure 7–6) shows an HTML form used as a front end to the servlet.
Figures 7–7 through 7–10 show some possible results. Just to simplify experimenta-
tion, Listing 7.10 presents an interactive application that lets you specify the message
and font name on the command line, outputting the image to a file.

 public static void writeJPEG(BufferedImage image,
 File file) {
 try {
 ImageIO.write(image, "jpg", file);
 } catch(IOException ioe) {
 System.err.println("Error writing JPEG file: " + ioe);
 }
 }

 public static String[] getFontNames() {
 GraphicsEnvironment env =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 return(env.getAvailableFontFamilyNames());
 }

 /** We need a Graphics object to get a FontMetrics object
 * (an object that says how big strings are in given fonts).
 * But, you need an image from which to derive the Graphics
 * object. Since the size of the "real" image will depend on
 * how big the string is, we create a very small temporary
 * image first, get the FontMetrics, figure out how
 * big the real image should be, then use a real image
 * of that size.
 */

 private static FontMetrics getFontMetrics(Font font) {
 BufferedImage tempImage =
 new BufferedImage(1, 1, BufferedImage.TYPE_INT_RGB);
 Graphics2D g2d = (Graphics2D)tempImage.getGraphics();
 return(g2d.getFontMetrics(font));
 }
}

Listing 7.8 MessageImage.java (continued)

CSAJSP2.book Page 223 Thursday, July 17, 2003 5:05 PM

Chapter 7 � Generating the Server Response: HTTP Response Headers224

Listing 7.9 ShadowedText.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>JPEG Generation Service</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">JPEG Generation Service</H1>
Welcome to the <I>free</I> trial edition of our JPEG
generation service. Enter a message, a font name,
and a font size below, then submit the form. You will
be returned a JPEG image showing the message in the
designated font, with an oblique "shadow" of the message
behind it. Once you get an image you are satisfied with,
right-click
on it (or click while holding down the SHIFT key) to save
it to your local disk.
<P>
The server is currently on Windows, so the font name must
be either a standard Java font name (e.g., Serif, SansSerif,
or Monospaced) or a Windows font name (e.g., Arial Black).
Unrecognized font names will revert to Serif. Press the
"Show Font List" button for a complete list.

<FORM ACTION="/servlet/coreservlets.ShadowedText">
 <CENTER>
 Message:
 <INPUT TYPE="TEXT" NAME="message">

 Font name:
 <INPUT TYPE="TEXT" NAME="fontName" VALUE="Serif">

 Font size:
 <INPUT TYPE="TEXT" NAME="fontSize" VALUE="90"><P>
 <INPUT TYPE="SUBMIT" VALUE="Build Image"><P>
 <INPUT TYPE="SUBMIT" NAME="showList" VALUE="Show Font List">
 </CENTER>
</FORM>

</BODY></HTML>

CSAJSP2.book Page 224 Thursday, July 17, 2003 5:05 PM

7.5 Using Servlets to Generate JPEG Images 225

Figure 7–6 Front end to the image-generation servlet.

Figure 7–7 Result of servlet when the client selects Show Font List.

CSAJSP2.book Page 225 Thursday, July 17, 2003 5:05 PM

Chapter 7 � Generating the Server Response: HTTP Response Headers226

Figure 7–8 One possible result of the image-generation servlet. The client can save the
image to disk as somename.jpg and use it in Web pages or other applications.

Figure 7–9 A second possible result of the image-generation servlet.

CSAJSP2.book Page 226 Thursday, July 17, 2003 5:05 PM

7.5 Using Servlets to Generate JPEG Images 227

Figure 7–10 A third possible result of the image-generation servlet.

Listing 7.10 ImageTest.java

package coreservlets;

import java.io.*;

public class ImageTest {
 public static void main(String[] args) {
 String message = "Testing";
 String font = "Arial";
 if (args.length > 0) {
 message = args[0];
 }
 if (args.length > 1) {
 font = args[1];
 }
 MessageImage.writeJPEG
 (MessageImage.makeMessageImage(message, font, 40),
 new File("ImageTest.jpg"));
 }
}

CSAJSP2.book Page 227 Thursday, July 17, 2003 5:05 PM

